
MCC DAQ HAT Library Documentation
Release 1.4.0

Measurement Computing

Dec 11, 2020





CONTENTS

1 Hardware Overview 1
1.1 Hardware Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 MCC 118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Board components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1.1 Screw terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1.2 Address jumpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1.3 Status LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1.4 Header connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Functional details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3.1 Scan clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3.2 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.4 Firmware updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.5 MCC 118-OEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.6 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 MCC 128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Single Ended Input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Differential Input Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3 Board components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.3.1 Screw terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3.2 Address jumpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3.3 Status LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3.4 Header connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.4 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.5 Functional details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.5.1 Scan clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.5.2 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.6 Firmware updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.7 MCC 128-OEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.8 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 MCC 134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.1 Board components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.1.1 Screw terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.1.2 Address jumpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.1.3 Status LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.1.4 Header connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.2 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.3 Functional details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.3.1 Best practices for accurate thermocouple measurements . . . . . . . . . . . . . . . 20
1.4.4 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

i



1.5 MCC 152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5.1 Board components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5.1.1 Screw terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5.1.2 Address jumpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.1.3 DIO Power jumper (W3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.1.4 Status LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.1.5 Header connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5.2 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.3 Functional details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5.3.1 Mixing 3.3V and 5V digital inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5.4 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.6 MCC 172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.6.1 Board components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.6.1.1 10-32 coaxial connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.6.1.2 Screw terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.6.1.3 Address jumpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.6.1.4 Status LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.6.1.5 Header connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.6.2 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.6.3 Functional details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.6.3.1 ADC clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.6.3.2 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.6.3.3 Alias Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.6.4 Firmware updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.6.5 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Installing the DAQ HAT board 41
2.1 Installing a single board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2 Installing multiple boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Installing and Using the Library 45
3.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Firmware Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 MCC 118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Creating a C program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Creating a Python program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 C Library Reference 47
4.1 Global functions and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2 Data types and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.2.1 HAT IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.2.2 Result Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.2.3 HatInfo structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.2.4 Analog Input / Scan Option Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.2.5 Scan Status Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.2.6 Trigger Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 MCC 118 functions and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Data definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2.1 Device Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 MCC 128 functions and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Data definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

ii



4.3.2.1 Device Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.2.2 Analog Input Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.2.3 Analog Input Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 MCC 134 functions and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.2 Data definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.2.1 Device Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.2.2 Thermocouple Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 MCC 152 functions and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5.2 Data types and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5.2.1 Device Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.2.2 DIO Config Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 MCC 172 functions and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.6.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.6.2 Data definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6.2.1 Device Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.6.2.2 Source Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Python Library Reference 95
5.1 Global methods and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.1.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.2.1 Hat IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.1.2.2 Trigger modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.1.2.3 Scan / read option flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1.3 HatError class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2 MCC 118 class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3 MCC 128 class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.2.1 Analog input modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.2.2 Analog input ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 MCC 134 class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4.2.1 Thermocouple types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.5 MCC 152 class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.5.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5.2.1 DIO Config Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.6 MCC 172 class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.6.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.6.2.1 Source types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Index 141

iii



iv



CHAPTER

ONE

HARDWARE OVERVIEW

The MCC DAQ HATs are Raspberry Pi add-on boards (Hardware Attached on Top). They adhere to the Raspberry Pi
HAT specification, but also extend it to allow stacking up to 8 MCC boards on a single Raspberry Pi.

C and Python libraries, documentation, and examples are provided to allow you to develop your own applications.

1.1 Hardware Compatibility

The MCC DAQ HATs are compatible with all Raspberry Pi models with the 40-pin GPIO header (not the original Pi
1 A or B with the 26-pin header.) They are generally not compatible with any other brand of Raspberry Pi HAT or
add-on board that attaches to the GPIO header, or devices that use the Raspberry Pi SPI interface.

In particular, LCD displays that use the GPIO header (not HDMI) usually use the SPI interface and will prevent the
DAQ HATs from working. Even if the display is removed, the driver is probably still loaded by /boot/config.txt and
will cause issues with the DAQ HATs. If you have a problem with your device and have used a GPIO header display
with your Raspberry Pi then consult your display hardware documentation for how to remove the driver.

The specific pins used by each DAQ HAT are documented in the electrical specifications for that device.

1.2 MCC 118

The MCC 118 is an 8-channel analog voltage input board with the following features:

• 12-bit, 100 kS/s A/D converter

• ±10 V single-ended analog inputs

• Factory calibration with ±20.8 mV input accuracy

• Bidirectional scan clock

• Onboard sample buffers

• Digital trigger input

1



MCC DAQ HAT Library Documentation, Release 1.4.0

1.2.1 Board components

1.2.1.1 Screw terminals

• CH 0 In to CH 7 In (CHx): Single-ended analog input terminals.

• Clock (CLK): Bidirectional terminal for scan clock input / output. Set the direction with software. Set for input
to clock the scans with an external clock signal, or output to use the internal scan clock.

• Trigger (TRIG): External digital trigger input terminal. The trigger mode is software configurable for edge or
level sensitive, rising or falling edge, high or low level.

• AGND (GND): Common ground for the analog input terminals.

• DGND (GND): Common ground for the clock and trigger terminals.

1.2.1.2 Address jumpers

• A0 to A2: Used to identify each HAT when multiple boards are connected. The first HAT connected to the
Raspberry Pi must be at address 0 (no jumper). Install jumpers on each additional connected board to set the
desired address. Refer to the Installing multiple boards topic for more information about the recommended
addressing method.

1.2.1.3 Status LED

The LED turns on when the board is connected to a Raspberry Pi with external power applied and flashes when
communicating with the board. The LED may be blinked by the user.

1.2.1.4 Header connector

The board header is used to connect with the Raspberry Pi. Refer to Installing the DAQ HAT board for more informa-
tion about the header connector.

2 Chapter 1. Hardware Overview



MCC DAQ HAT Library Documentation, Release 1.4.0

1.2.2 Functional block diagram

1.2.3 Functional details

1.2.3.1 Scan clock

The clock input / output (terminal CLK) is used to output the internal scan clock or apply an external scan clock to
the device. The clock input signal may be a 3.3V or 5V TTL or CMOS logic signal, and the output will be 3.3V
LVCMOS. A scan occurs for each rising edge of the clock, acquiring one sample from each of the selected channels
in the scan. For example, when scanning channels 0, 1, and 2 the conversion activity will be:

1.2. MCC 118 3



MCC DAQ HAT Library Documentation, Release 1.4.0

1.2.3.2 Trigger

The trigger input (terminal TRIG) is used to hold off the beginning of an analog input scan until the desired condition
is met at the trigger input. The trigger input signal may be a 3.3V or 5V TTL or CMOS logic signal. The input
condition may be rising edge, falling edge, high level, or low level.

1.2.4 Firmware updates

Use the firmware update tool to update the firmware on your MCC 118 board(s). The “0” in the example below is the
board address. Repeat the command for each MCC 118 address in your board stack. This example demonstrates how
to update the firmware on the MCC 118 that is installed at address 0:

mcc118_firmware_update 0 ~/daqhats/tools/MCC_118.hex

1.2.5 MCC 118-OEM

An OEM version is available that is designed with (unpopulated) header connectors instead of screw terminals. The
board accepts 1x6 and 1x10 0.1” spacing header connectors. The MCC 118-OEM is functionally equivalent to the
standard version. Refer to the Electrical Specifications for connector information.

1.2.6 Specifications

4 Chapter 1. Hardware Overview



Electrical Specifications MCC 118 

ES MCC 118.docx Revision 1.1 
Page 1 of 4 10/09/19 

All specifications are subject to change without notice. 
Typical for 25 °C unless otherwise specified. 
Specifications in italic text are guaranteed by design. 

Analog input 
Table 1. General analog input specifications 

Parameter Conditions Specification 
A/D converter type  Successive approximation 
ADC resolution  12 bits 

Number of channels  8 single-ended 

Input voltage range  ±10 V 
Absolute maximum input 
voltage 

CHx relative to AGND   ±25 V max (power on) 
 ±25 V max (power off) 

Input impedance   1 MΩ (power on) 
 1 MΩ (power off) 

Input bias current 10 V input –12 µA 
0 V input 2 µA 
–10 V input 12 µA 

Monotonicity  Guaranteed 
Input bandwidth Small signal (–3 dB) 150 kHz 
Maximum working voltage Input range relative to 

AGND 
±10.1 V max  

Crosstalk Adjacent channels, DC to  
10 kHz 

–75 dB 

Input coupling   DC 
Recommended warm-up time  1 minute min 
Sampling rate, hardware paced Internal scan clock 0.004 S/s to 100 kS/s, software-selectable 

External scan clock 100 kS/s max 
Sampling mode  One A/D conversion for each configured channel per 

clock 
Conversion time Per channel 8 µs 
Scan clock source   Internal scan clock 

 External scan clock input on terminal CLK 
Channel queue  Up to eight unique, ascending channels 
Throughput, Raspberry Pi®  
2 / 3 / 4 

Single board 100 kS/s max 
Multiple boards Up to 320 kS/s aggregate (Note 1) 

Throughput, Raspberry Pi  
A+ / B+ 

Single board Up to 100 kS/s (Note 1) 
Multiple boards Up to 100 kS/s aggregate (Note 1) 

Note 1:  Depends on the load on the Raspberry Pi processor. The highest throughput may be achieved by using a 
Raspberry Pi 3 B+.  



Electrical Specifications MCC 118 

ES MCC 118.docx Revision 1.1 
Page 2 of 4 10/09/19 

Accuracy 
Analog input DC voltage measurement accuracy 

Table 2. DC Accuracy components and specifications. All values are (±) 

Range 
Gain error, max 
(% of reading) 

Offset error, max 
(mV) 

Absolute accuracy 
at Full Scale 

(mV) 

Gain temperature 
coefficient 

(% reading/°C) 

Offset 
temperature 
coefficient 

(mV/°C) 
±10V 0.098 11 20.8 0.016 0.87 

Noise performance 
For the peak to peak noise distribution test, the input channel is connected to AGND at the input terminal block, 
and 12,000 samples are acquired at the maximum throughput. 

Table 3. Noise performance specifications 

Range Counts LSBrms 
±10 V 5 0.76 

External digital trigger 
Table 4. External digital trigger specifications 

Parameter Conditions Specification 
Trigger source  TRIG input 
Trigger mode  Software configurable for rising or falling edge, or high 

or low level 
Trigger latency Internal scan clock 1 µs max 

External scan clock 1 µs + 1 scan clock cycle max 
Trigger pulse width  125 ns min 
Input type  Schmitt trigger, weak pull-down to ground 

(approximately 10 K) 
Input high voltage threshold  2.64 V min 
Input low voltage threshold  0.66 V max 
Input voltage limits  5.5 V absolute max 

–0.5 V absolute min 
0 V recommended min 



Electrical Specifications MCC 118 

ES MCC 118.docx Revision 1.1 
Page 3 of 4 10/09/19 

External scan clock input/output 
Table 5. External scan clock I/O specifications 

Parameter Specification 
Terminal name CLK 
Terminal types Bidirectional, defaults to input when not sampling analog channels 
Direction (software-selectable) Output:  Outputs internal scan clock; active on rising edge 

Input:  Receives scan clock from external source; active on rising edge 
Input clock rate 100 kHz max 
Input clock pulse width 400 ns min 
Input type Schmitt trigger, weak pull-down to ground in input mode (approximately 10 K), 

protected with 150 Ω series resistor 
Input high voltage threshold 2.64 V min 
Input low voltage threshold 0.66 V max 
Input voltage limits 5.5 V absolute max 

-0.5 V absolute min 
0 V recommended min 

Output high voltage  3.0 V min (IOH = -50 µA) 
2.65 V min (IOH = –3 mA) 

Output low voltage  0.1 V max (IOL = 50 µA) 
0.8 V max (IOL = 3 mA) 

Output current ±3 mA max  

Memory 
Table 6. Memory specifications 

Parameter Specification 
Data FIFO 7 K (7,168) analog input samples 
Non-volatile memory 4 KB (ID and calibration storage, no user-modifiable memory) 

Power 
Table 7. Power specifications 

Parameter Conditions Specification 
Supply current, 3.3V supply Typical 35 mA 

Maximum  55 mA 

Interface specifications 
Table 8. Interface specifications 

Parameter Specification 
Raspberry Pi ™ GPIO pins 
used 

GPIO 8, GPIO 9, GPIO 10, GPIO 11 (SPI interface) 
ID_SD, ID_SC (ID EEPROM) 
GPIO 12, GPIO 13, GPIO 26, (Board address) 

Data interface type SPI slave device, CE0 chip select 
SPI mode 1 
SPI clock rate 10 MHz, max 



Electrical Specifications MCC 118 

ES MCC 118.docx Revision 1.1 
Page 4 of 4 10/09/19 

Environmental 
Table 9. Environmental specifications  

Parameter Specification 
Operating temperature range 0 °C to 55 °C 
Storage temperature range –40 °C to 85 °C 
Humidity 0% to 90% non-condensing 

Mechanical 
Table 10. Mechanical specifications 

Parameter Specification 
Dimensions (L × W × H) 65 × 56.5 × 12 mm (2.56 × 2.22 × 0.47 in.) max 

User connectors 
Table 11. Screw terminal connector specifications 

Parameter Specification 
Connector type Screw terminal 
Wire gauge range 16 AWG to 30 AWG 

Table 12. Optional header connector (MCC 118-OEM) specifications 

Parameter Specification 
Connector type User supplied and user installed header 
W5 header footprint 1×6, 0.1" spacing 
W4 header footprint 1×10, 0.1" spacing 

Table 13. Connector pinout 

Connector J2 or W5 (OEM version) 
Pin Signal name Pin description 
1 CH0 Channel 0 
2 CH1 Channel 1 
3 GND Analog ground 
4 CH2 Channel 2 
5 CH3 Channel 3 
6 GND Analog ground 
Connector J3 or W4 (OEM version) 
Pin Signal name Pin description 
7 CH4 Channel 4 
8 CH5 Channel 5 
9 GND Analog ground 
10 CH6 Channel 6 
11 CH7 Channel 7 
12 GND Analog ground 
13 CLK Scan clock input / output 
14 GND Digital ground 
15 TRIG Digital trigger input 
16 GND Digital ground 

 



MCC DAQ HAT Library Documentation, Release 1.4.0

1.3 MCC 128

The MCC 128 is an analog voltage input board with the following features:

• 16-bit, 100 kS/s A/D converter

• Single-ended and differential input modes

• 4 differential or 8 single-ended channels

• ±10 V, ±5V, ±2V, and ±1V input ranges

• Factory calibration

• Bidirectional scan clock

• Onboard sample buffers

• Digital trigger input

1.3.1 Single Ended Input configuration

1.3. MCC 128 9



MCC DAQ HAT Library Documentation, Release 1.4.0

1.3.2 Differential Input Configuration

1.3.3 Board components

1.3.3.1 Screw terminals

• CH0H/CH0L to CH3H/CH3L (CHx): Analog input terminals.

• Clock (CLK): Bidirectional terminal for scan clock input / output. Set the direction with software. Set for input
to clock the scans with an external clock signal, or output to use the internal scan clock.

• Trigger (TRIG): External digital trigger input terminal. The trigger mode is software configurable for edge or
level sensitive, rising or falling edge, high or low level.

• AGND (GND): Common ground for the analog input terminals.

• DGND (GND): Common ground for the clock and trigger terminals.

1.3.3.2 Address jumpers

• A0 to A2: Used to identify each HAT when multiple boards are connected. The first HAT connected to the
Raspberry Pi must be at address 0 (no jumper). Install jumpers on each additional connected board to set the

10 Chapter 1. Hardware Overview



MCC DAQ HAT Library Documentation, Release 1.4.0

desired address. Refer to the Installing multiple boards topic for more information about the recommended
addressing method.

1.3.3.3 Status LED

The LED turns on when the board is connected to a Raspberry Pi with external power applied and flashes when
communicating with the board. The LED may be blinked by the user.

1.3.3.4 Header connector

The board header is used to connect with the Raspberry Pi. Refer to Installing the DAQ HAT board for more informa-
tion about the header connector.

1.3.4 Functional block diagram

1.3.5 Functional details

1.3.5.1 Scan clock

The clock input / output (terminal CLK) is used to output the internal scan clock or apply an external scan clock to
the device. The clock input signal may be a 3.3V or 5V TTL or CMOS logic signal, and the output will be 3.3V
LVCMOS. A scan occurs for each rising edge of the clock, acquiring one sample from each of the selected channels
in the scan. For example, when scanning channels 0, 1, and 2 the conversion activity will be:

1.3. MCC 128 11



MCC DAQ HAT Library Documentation, Release 1.4.0

1.3.5.2 Trigger

The trigger input (terminal TRIG) is used to hold off the beginning of an analog input scan until the desired condition
is met at the trigger input. The trigger input signal may be a 3.3V or 5V TTL or CMOS logic signal. The input
condition may be rising edge, falling edge, high level, or low level.

1.3.6 Firmware updates

Use the firmware update tool to update the firmware on your MCC 128 board(s). The “0” in the example below is the
board address. Repeat the command for each MCC 128 address in your board stack. This example demonstrates how
to update the firmware on the MCC 128 that is installed at address 0:

mcc128_firmware_update 0 ~/daqhats/tools/MCC_128.fw

1.3.7 MCC 128-OEM

An OEM version is available that is designed with (unpopulated) header connectors instead of screw terminals. The
board accepts 1x6 and 1x10 0.1” spacing header connectors. The MCC 128-OEM is functionally equivalent to the
standard version. Refer to the Electrical Specifications for connector information.

12 Chapter 1. Hardware Overview



MCC DAQ HAT Library Documentation, Release 1.4.0

1.3.8 Specifications

1.3. MCC 128 13



Electrical Specifications MCC 128 

ES MCC 128.docx Revision 1.0 
Page 1 of 5 12/10/20 

All specifications are subject to change without notice. 
Typical for 25 °C unless otherwise specified. 
Specifications in italic text are guaranteed by design. 

Analog input 
Table 1. Analog input specifications 

Parameter Condition Specification 
A/D converter type  Successive approximation 
ADC resolution  16 bits 

Input modes  Single ended (CHx – AGND) 
Differential (CHxH – CHxL) 

Number of channels  8 single-ended or 4 differential; software-selectable 
Input voltage ranges  ±10 V, ±5 V, ±2 V, ±1 V 
Absolute maximum input 
voltage CHx relative to AGND ±30 V max (power on) 

±20 V max (power off) 
Input impedance  >1 GΩ 
Input bias current  ±200 pA, typ 
INL  ±1.8 LSB 
DNL  16 bits no missing codes 

CMRR DC to 5 kHz 

±10 V range: 56 dB 
±5 V range: 57 dB 
±2 V range: 61 dB 
±1 V range: 65 dB 

Input bandwidth Small signal (-3 dB) 220 kHz 
Maximum working voltage Input range relative to AGND ±10.1 V max 

Crosstalk Adjacent channels, DC to 
10 kHz -70 dB 

Input coupling  DC 
Recommended warm up time  1-minute min 
Sampling rate, hardware 
paced 

Internal scan clock 1 S/s to 100 kS/s, software-selectable 
External scan clock 100 kS/s max 

Sampling mode  One A/D conversion for each configured channel per 
clock 

Conversion time Per channel 9.8 µs 

Scan clock source   Internal scan clock 
 External scan clock input on terminal CLK 

Channel queue  Up to eight unique, ascending channels in a single 
range and mode 

Throughput, Raspberry Pi®  
2 / 3 / 4 

Single board 100 kS/s max 
Multiple boards Up to 320 kS/s aggregate (Note 1) 

Throughput, Raspberry Pi  
A+ / B+ 

Single board Up to 100 kS/s (Note 1) 
Multiple boards Up to 100 kS/s aggregate (Note 1) 

Note 1:  Depends on the load on the Raspberry Pi processor. The highest throughput may be achieved by using a 
Raspberry Pi 3 B+. Accuracy 



Electrical Specifications MCC 128 

ES MCC 128.docx Revision 1.0 
Page 2 of 5 12/10/20 

Analog input DC voltage measurement accuracy 
Table 2. Absolute accuracy 

Range At full scale (typical at 25 °C) At full scale (maximum over temperature) 
SE ±10 V ±6 mV ±34 mV 
SE ±5 V ±3 mV ±17 mV 
SE ±2 V ±1.2 mV ±7 mV 
SE ±1 V ±600 µV ±3.4 mV 

Diff. ±10 V ±14 mV ±42 mV 
Diff. ±5 V ±6.5 mV ±21 mV 
Diff. ±2 V ±2.1 mV ±8 mV 
Diff. ±1 V ±900 µV ±3.7 mV 

Noise performance 
For the peak to peak noise distribution test, the input channel is in single-ended mode connected to AGND at 
the input terminal block, and 100,000 samples are acquired at the maximum throughput. The performance is the 
same for single-ended and differential mode. 

Table 3. Noise performance specifications 

Range Vrms 
±10 V 350 µV 
±5 V 220 µV 
±2 V 150 µV 
±1 V 100 µV 

External digital trigger 
Table 4. External digital trigger specifications 

Parameter Specification 
Trigger source TRIG input 
Trigger mode Software configurable for edge or level sensitive, rising or falling edge, high or low 

level. 
Trigger latency Internal scan clock: 1 µs max 

External scan clock: 1 µs + 1 scan clock cycle max 
Trigger pulse width 125 ns min 
Input type Schmitt trigger, 100 kΩ pull-down to ground 
Input high voltage threshold 1.3 V min 
Input low voltage threshold 1.5 V max 
Input hysteresis 0.4 V min 
Input voltage limits 5.5 V absolute max 

–0.5 V absolute min 
0 V recommended min 



Electrical Specifications MCC 128 

ES MCC 128.docx Revision 1.0 
Page 3 of 5 12/10/20 

External scan clock input/output 
Table 5. External scan clock I/O specifications 

Parameter Specification 
Terminal name CLK 
Terminal types Bidirectional, defaults to input when not sampling analog channels 
Direction (software selectable) Output:  Outputs internal scan clock, active on rising edge 

Input:  Receives scan clock from external source, active on rising edge 
Input clock rate 100 kHz max 
Input clock pulse width 400 ns min 
Input type Schmitt trigger, 100 kΩ pull-down to ground 
Input high voltage threshold 1.3 V min 
Input low voltage threshold 1.5 V max 
Input hysteresis 0.4 V min 
Input voltage limits 5.5V absolute max 

-0.5V absolute min 
0V recommended min 

Output high voltage  3.0 V min (IOH = -100 µA) 
2.4 V min (IOH = –4 mA) 

Output low voltage  0.1 V max (IOL = 100 µA) 
0.4 V max (IOL = 4 mA) 

Output current ±4 mA max  

Memory 
Table 6. Memory specifications 

Parameter Specification 
Data FIFO 72 K (73,728) analog input samples 
Non-volatile memory 4 KB (ID and calibration storage, no user-modifiable memory) 

Power 
Table 7. Power specifications 

Parameter Conditions Specification 
Supply current, 5V supply Typical 85 mA 

Maximum  135 mA 

Interface specifications 
Table 8. Interface specifications 

Parameter Specification 
Raspberry Pi ™ GPIO pins used GPIO 8, 9, 10, 11 (SPI interface) 

ID_SD, ID_SC (ID EEPROM) 
GPIO 12, 13, 26 (Board address) 
GPIO 16, 20 (Reset, IRQ) 

Data interface type SPI slave device, CE0 chip select 
SPI mode 1 
SPI clock rate 18 MHz, max 



Electrical Specifications MCC 128 

ES MCC 128.docx Revision 1.0 
Page 4 of 5 12/10/20 

Environmental 
Table 9. Environmental specifications  

Parameter Specification 
Operating temperature range 0 °C to 55 °C 
Storage temperature range –40 °C to 85 °C 
Humidity 0% to 90% non-condensing 

Mechanical 
Table 10. Mechanical specifications 

Parameter Specification 
Dimensions (L × W × H) 65 × 56.5 × 12 mm (2.56 × 2.22 × 0.47 in.) max 

Screw terminal connector 
Table 11. Screw terminal connector specifications 

Parameter Specification 
Connector type Screw terminal 
Wire gauge range 16 AWG to 30 AWG 

Table 12. Differential mode terminal pinout 

Connector J2 
Pin Signal name Pin description 
1 CH0H Analog input 0 Hi 
2 CH0L Analog input 0 Lo 
3 AGND Analog ground 
4 CH1H Analog input 1 Hi 
5 CH1L Analog input 1 Lo 
6 AGND Analog ground 
Connector J3 
Pin Signal name Pin description 
7 CH2H Analog input 2 Hi 
8 CH2L Analog input 2 Lo 
9 AGND Analog ground 
10 CH3H Analog input 3 Hi 
11 CH3L Analog input 3 Lo 
12 AGND Analog ground 
13 CLK Scan clock input / output 
14 GND Digital ground 
15 TRIG Digital trigger input 
16 GND Digital ground 



Electrical Specifications MCC 128 

ES MCC 128.docx Revision 1.0 
Page 5 of 5 12/10/20 

Table 13. Single-ended mode terminal pinout 

Connector J2 
Pin Signal name Pin description 
1 CH0 Analog input 0 
2 CH4 Analog input 4 
3 AGND Analog ground 
4 CH1 Analog input 2 
5 CH5 Analog input 3 
6 AGND Analog ground 
Connector J3 
Pin Signal name Pin description 
7 CH2 Analog input 4 
8 CH6 Analog input 5 
9 AGND Analog ground 
10 CH3 Analog input 6 
11 CH7 Analog input 7 
12 AGND Analog ground 
13 CLK Scan clock input / output 
14 GND Digital ground 
15 TRIG Digital trigger input 
16 GND Digital ground 

 



MCC DAQ HAT Library Documentation, Release 1.4.0

1.4 MCC 134

The MCC 134 is a 4-channel thermocouple input board with the following features:

• 24-bit A/D converter

• Onboard sensor for cold junction compensation

• Linearization for J, K, R, S, T, N, E, B type thermocouples

• Open thermocouple detection

• Thermocouple inputs are electrically isolated from the Raspberry Pi for use in harsh environments

1.4.1 Board components

1.4.1.1 Screw terminals

• CH0H/CH0L to CH3H/CH3L (+x-): Differential thermocouple input terminals.

1.4.1.2 Address jumpers

• A0 to A2: Used to identify each HAT when multiple boards are connected. The first HAT connected to the
Raspberry Pi must be at address 0 (no jumper). Install jumpers on each additional connected board to set the
desired address. Refer to the Installing multiple boards topic for more information about the recommended
addressing method.

1.4.1.3 Status LED

The LED turns on when the board is connected to a Raspberry Pi with external power applied.

1.4.1.4 Header connector

The board header is used to connect with the Raspberry Pi. Refer to Installing the DAQ HAT board for more informa-
tion about the header connector.

1.4. MCC 134 19



MCC DAQ HAT Library Documentation, Release 1.4.0

1.4.2 Functional block diagram

1.4.3 Functional details

1.4.3.1 Best practices for accurate thermocouple measurements

The MCC 134 should achieve results within the maximum thermocouple accuracy specifications when operating
within the documented environmental conditions. Operating in conditions with excessive temperature transients or
airflow may affect results. In most cases, the MCC 134 will achieve the typical specifications. To achieve the most
accurate thermocouple readings, MCC recommends the following practices:

• Reduce the load on the Raspberry Pi processor. Running a program that fully loads all 4 cores on the Raspberry
Pi processor can raise the temperature of the processor above 70 °C. Running a program that only loads 1 core
will operate approximately 20 °C cooler.

• Minimize environmental temperature variations. Place the MCC 134 away from heat or cooling sources that
cycle on and off. Sudden environmental changes may lead to increased errors.

• Provide a steady airflow, such as from a fan. A steady airflow can dissipate heat and reduce errors.

• When configuring multiple MCC DAQ Hats in a stack, position the MCC 134 farthest from the Raspberry Pi
board. Since the Raspberry Pi is a significant heat source, placing the MCC 134 farthest from the Pi will increase
accuracy.

For additional information, refer to the Measuring Thermocouples with Raspberry Pi and the MCC 134 Tech Tip.

1.4.4 Specifications

20 Chapter 1. Hardware Overview

https://www.mccdaq.com/TechTips/TechTip-11.aspx


Electrical Specification MCC 134 

ES MCC 134.docx Revision 1.0 
Page 1 of 6 3/18/2019 

All specifications are subject to change without notice. 
Typical for 25 °C unless otherwise specified.  
Specifications in italic text are guaranteed by design. 

Thermocouple input 
Table 1. Thermocouple input specifications 

Parameter Condition Specification 
A/D converter  Delta-Sigma 
ADC resolution   24 bits 
Number of channels  4 

Input isolation Between input and Raspberry Pi 
ground 500 Vpk withstand max 

Differential input voltage range  ±78.125 mV 

Common mode voltage range Between any CHx+ or – input 
and any other input 0.8 V max 

Absolute maximum input 
voltage Between any two TCx inputs ±25 V (power on) 

±25 V (power off) 
Differential input impedance  40 MΩ 
Input current  83 nA 
Common mode rejection fIN = 50 Hz or 60 Hz  93 dB 
Update interval  1 second min 
Open thermocouple detection 
response time  2 seconds 

Recommended warm-up time  15 minutes min 
Calibration method  Factory 

Compatible thermocouples 
Table 2. Compatible sensor type specifications 

Parameter Specification 

Thermocouple type 

J: –210 °C to 1200 °C 
K: –270 °C to 1372 °C 
R: –50 °C to 1768 °C 
S: –50 °C to 1768 °C 
T: –270 °C to 400 °C 
N: –270 °C to 1300 °C 
E: –270 °C to 1000 °C 
B: 50 °C to 1820 °C 



Electrical Specification MCC 134 

ES MCC 134.docx Revision 1.0 
Page 2 of 6 3/18/2019 

Accuracy 
Thermocouple measurement accuracy 
Thermocouple accuracy specifications, including typical CJC measurement error. 
All specifications are (±). 

Note 1:  Thermocouple measurement accuracy specifications include polynomial linearization, cold-junction 
compensation error, and system noise. Accuracies shown do not include inherent thermocouple error or large 
temperature gradients across the board. Contact your thermocouple supplier for details on the inherent 
thermocouple accuracy error. The accuracy specifications assume the device has been warmed up for the 
recommended 15 minutes.  

Note 2:  To avoid excessive cold-junction compensation errors, operate the device in a stable temperature environment 
and away from heat sources that could cause temperature gradients across the board. Refer to the documentation 
for ways to decrease this error. 

Note 3:  When thermocouples are attached to conductive surfaces, the voltage differential between multiple 
thermocouples must remain within ±0.8 V. For best results MCC recommends using electrically insulated 
thermocouples when possible. 

 

 

0

1

2

3

4

5

-210 -10 190 390 590 790 990 1190

M
ea

su
re

m
en

t 
Er

ro
r,

 C

Measured Temperature, C

Type J Accuracy

Typical Maximum

0

1

2

3

4

5

-270 -70 130 330 530 730 930 1130 1330

M
ea

su
re

m
en

t 
Er

ro
r,

 C

Measured Temperature, C

Type K Accuracy

Typical Maximum



Electrical Specification MCC 134 

ES MCC 134.docx Revision 1.0 
Page 3 of 6 3/18/2019 

 

 

 

0

1

2

3

4

5

-50 150 350 550 750 950 1150 1350 1550 1750

M
ea

su
re

m
en

t 
Er

ro
r,

 C

Measured Temperature, C

Type R Accuracy

Typical Maximum

0

1

2

3

4

5

-50 150 350 550 750 950 1150 1350 1550 1750

M
ea

su
re

m
en

t 
Er

ro
r,

 C

Measured Temperature, C

Type S Accuracy

Typical Maximum

0

1

2

3

4

5

-270 -170 -70 30 130 230 330

M
ea

su
re

m
en

t 
Er

ro
r,

 C

Measured Temperature, C

Type T Accuracy

Typical Maximum



Electrical Specification MCC 134 

ES MCC 134.docx Revision 1.0 
Page 4 of 6 3/18/2019 

 

 

  

0

1

2

3

4

5

-270 -70 130 330 530 730 930 1130

M
ea

su
re

m
en

t 
Er

ro
r,

 C

Measured Temperature, C

Type N Accuracy

Typical Maximum

0

1

2

3

4

5

-270 -70 130 330 530 730 930

M
ea

su
re

m
en

t 
Er

ro
r,

 C

Measured Temperature, C

Type E Accuracy

Typical Maximum

0

1

2

3

4

5

50 250 450 650 850 1050 1250 1450 1650

M
ea

su
re

m
en

t 
Er

ro
r,

 C

Measured Temperature, C

Type B Accuracy

Typical Maximum



Electrical Specification MCC 134 

ES MCC 134.docx Revision 1.0 
Page 5 of 6 3/18/2019 

Memory 
Table 3. Memory specifications 

Parameter Specification 
Non-volatile memory 4 KB (ID and calibration storage, no user-modifiable memory) 

Power 
Table 4. Power specifications 

Parameter Conditions Specification 
Supply current, 5V supply Typical 16 mA 

Maximum 24 mA 
Supply current, 3.3V supply Typical 1 mA 

Maximum 5 mA 

Interface 
Table 5. Interface specifications 

Parameter Specification 
Raspberry Pi ™ GPIO pins used GPIO 8, GPIO 9, GPIO 10, GPIO 11 (SPI interface) 

ID_SD, ID_SC (ID EEPROM) 
GPIO 12, GPIO 13, GPIO 26, (Board address) 

Data interface type SPI slave device, CE0 chip select 
SPI mode 1 
SPI clock rate 2 MHz, max 

Environmental 
Table 6. Environmental specifications 

Parameter Specification 
Operating temperature range 0 °C to 55 °C 
Storage temperature range –40 °C to 85 °C 
Humidity 0 °C to 90% non-condensing 

Mechanical 
Table 7. Mechanical specifications 

Parameter Specification 
Dimensions (L × W × H) 65 × 56.5 × 12 mm (2.56 × 2.22 × 0.47 in.) max 



Electrical Specification MCC 134 

ES MCC 134.docx Revision 1.0 
Page 6 of 6 3/18/2019 

Screw terminal connector 
Table 8. Screw terminal connector specifications 

Parameter Specification 
Connector type Screw terminal 
Wire gauge range 16 AWG to 30 AWG 

Table 9. Screw terminal pinout 

Pin Signal Name Pin Description 
1 CH0H CH0 sensor input (+) 
2 CH0L CH0 sensor input (–) 
3 CH1H CH1 sensor input (+) 
4 CH1L CH1 sensor input (–) 
5 CH2H CH2 sensor input (+) 
6 CH2L CH2 sensor input (–) 
7 CH3H CH3 sensor input (+) 
8 CH3L CH3 sensor input (–) 

  

 



MCC DAQ HAT Library Documentation, Release 1.4.0

1.5 MCC 152

The MCC 152 is an analog output / digital I/O board with the following features:

• 2 analog outputs

– 12-bit D/A converter

– 0 - 5 V outputs

– 5 mA output drive, sourcing

– Simultaneous update capability

• 8 digital I/O

– 5 V / 3.3 V supply voltage, jumper-selectable

– Bit-configurable for input (power on default) or output

– Outputs may be set to push-pull or open-drain (port-configurable)

– Programmable pull-up/pull-down resistors (disconnected on outputs when set to open-drain)

– 10 mA source/25 mA sink per output

– Interrupt on input state change

1.5.1 Board components

1.5.1.1 Screw terminals

• AO0 to AO1 (AOx): Analog output terminals.

• DIO0 to DIO7 (DIOx): Digital input/output terminals.

• VIO (VIO): Digital I/O supply voltage (5 V or 3.3 V, selectable with jumper W3.)

• AGND (AGND): Common ground for the analog output terminals.

• DGND (DGND): Common ground for the digital I/O terminals.

1.5. MCC 152 27



MCC DAQ HAT Library Documentation, Release 1.4.0

1.5.1.2 Address jumpers

• A0 to A2: Used to identify each DAQ HAT when multiple boards are connected. The first DAQ HAT connected
to the Raspberry Pi must be at address 0 (no jumper). Install jumpers on each additional connected board to set
the desired address. Refer to the Installing multiple boards topic for more information about the recommended
addressing method.

1.5.1.3 DIO Power jumper (W3)

• 5V and 3.3V: Selects the DIO voltage; the factory default is 5 V. Refer to Mixing 3.3V and 5V digital inputs for
more information about the DIO supply voltage.

1.5.1.4 Status LED

The LED turns on when the board is connected to a Raspberry Pi with external power applied.

1.5.1.5 Header connector

The board header is used to connect with the Raspberry Pi. Refer to Installing the DAQ HAT board for more informa-
tion about the header connector.

1.5.2 Functional block diagram

28 Chapter 1. Hardware Overview



MCC DAQ HAT Library Documentation, Release 1.4.0

1.5.3 Functional details

1.5.3.1 Mixing 3.3V and 5V digital inputs

The MCC 152 digital inputs are tolerant of 5V signals when the DIO is set to 3.3V operation with jumper W3.
However, current can flow into the MCC 152 from the 5V signal, so the user must limit this current to avoid raising the
voltage of the digital power supply rail (VIO) and possibly damaging components. MCC recommends using a series
resistor of 700 ohms or larger.

Example:

1.5.4 Specifications

1.5. MCC 152 29



Electrical Specifications MCC 152 

ES MCC 152.docx Revision 1.0 
Page 1 of 3 11/06/18 

All specifications are subject to change without notice. 
Typical for 25 °C unless otherwise specified. 
Specifications in italic text are guaranteed by design. 

Analog output 
Table 1. Analog output specifications 

Parameter Condition Specification 
Resolution  12 bits, 1 in 4,096 
Output range  0 V to 5.0 V 
Number of channels  2 
Write time  12 µs, typ 
Power on and reset voltage Initializes to 000h code 0 V, ±10 mV 
Output drive Each D/A OUT 5 mA, sourcing 
Slew rate  0.8 V/µs typ 
Differential nonlinearity  ±0.25 LSB max 
Zero-scale error (Note 1) 000h code +2 mV typ 

+10 mV max 
Full-scale error FFFh code -0.1 % of FSR typ 

±1 % of FSR max 
Offset error  ±1 mV typ 

±10 mV max 
Gain error  ±1.5 % of FSR max 

Note 1:  Zero-scale error may result in a "dead-band" digital input code region. In this case, changes in requested output 
voltage may not produce a corresponding change in the output voltage when the voltage is less than 10 mV. The 
offset error is tested and specified at 10 mV. 

Note 2:  Error tested at no load. 

Digital input/output 
Table 2. Digital I/O specifications 

Parameter Conditions Specification 
Digital input type   CMOS 
Number of I/O  8 
Configuration  Each bit may be configured as input (power on default) or output 
Pull-up configuration  Each bit has a programmable 100 kΩ pull resistor (50 to 150 kΩ 

range) that may be programmed as pull-up (power on default), 
pull-down, or disabled. The pull-up/down resistors are disabled 
on outputs when in open-drain mode. 

DIO supply voltage (VIO)  5 V or 3.3 V, jumper selectable with jumper W3 (factory default 
is 5 V.) 

Port read time  400 µs, typ 
Port write time  550 µs, typ 
Interrupt functionality  Each bit may be configured to generate an interrupt on change 

when in input mode. 
Input low voltage threshold  0.3 x VIO V max 
Input high voltage threshold  0.7 x VIO V min 
Input voltage limits Both 3.3 V and 5 V 

modes 
6.5 V absolute max (Note 3) 
–0.5 V absolute min 



Electrical Specifications MCC 152 

ES MCC 152.docx Revision 1.0 
Page 2 of 3 11/06/18 

Parameter Conditions Specification 
Input voltage recommended 
range 

5 V mode 5.5 V max 
0 V min 

3.3 V mode 3.8 V max (Note 3) 
0 V min 

Output type  CMOS, entire port may be configured as push-pull or open-drain 
High level output current  10 mA max (Note 4) 
Low level output current  25 mA max 
Output high voltage  VIO = 3.3 V 2.5 V min (IOH = –10 mA) 

VIO = 5 V 4.0 V min (IOH = –10 mA) 
Output low voltage  VIO = 3.3 V 0.25 V max (IOL = 10 mA) 

VIO = 5 V 0.2 V max (IOL = 10 mA) 

Note 3:  When VIO is 3.3V the input will tolerate voltages up to 6.5V, but the voltage must be current-limited or it will 
change the VIO voltage due to current flowing into the MCC 152. An external current limiting resistor of 700 Ω or 
larger is recommended on each input that is higher than 3.3V when the W3 jumper is in the 3.3V position. 

Memory 
Table 3. Memory specifications 

Parameter Specification 
Non-volatile memory 4 KB (ID and serial storage, no user-modifiable memory) 

Power 
Table 4. Power specifications 

Parameter Conditions Specification 
Supply current, 5 V supply Typical, 5V DIO selection 15 mA 

Maximum, 5V DIO selection 35 mA (Note 5, Note 6) 
Typical, 3.3V DIO selection 10 mA 
Maximum, 3.3V DIO selection 12 mA (Note 5) 

Supply current, 3.3 V supply 
(Note 4) 

Typical, 5V DIO selection 0.01 mA 
Maximum, 5V DIO selection 6 mA 
Typical, 3.3V DIO selection 3.5 mA 
Maximum, 3.3V DIO selection 11 mA (Note 5) 

Note 4:  The power consumed by all DAQ HATs must be within the capacity of the Raspberry Pi power supply. Extra care 
must be taken with sourcing 3.3V loads since they are supplied by the regulator on the Raspberry Pi; MCC 
recommends using the 5V DIO selection when sourcing large load currents such as LEDs. 

Note 5:  This specification does not include user loading on analog outputs. 
Note 6:  This specification does not include user loading on digital outputs or the VIO terminal. 

Interface specifications 
Table 5. Interface specifications 

Parameter Specification 
Raspberry Pi GPIO pins used GPIO 8, GPIO 10, GPIO 11 (SPI interface) 

GPIO 2, GPIO 3 (I2C interface) 
ID_SD, ID_SC (ID EEPROM) 
GPIO 12, GPIO 13, GPIO 26, (Board address) 
GPIO 21 (Interrupt) 

Data interface type SPI slave device, CE0 chip select (Analog output) 
I2C slave device (Digital I/O) 



Electrical Specifications MCC 152 

ES MCC 152.docx Revision 1.0 
Page 3 of 3 11/06/18 

Parameter Specification 
SPI mode 1 
SPI clock rate 50 MHz, max 
I2C address 0x20 to 0x27, depending on board address jumper setting 
I2C clock rate 400 kHz, max 

Environmental 
Table 6. Environmental specifications  

Parameter Specification 
Operating temperature range 0 °C to 55 °C 
Storage temperature range –40 °C to 85 °C 
Humidity 0% to 90% non-condensing 

Mechanical 
Table 7. Mechanical specifications 

Parameter Specification 
Dimensions (L × W × H) 65 × 56.5 × 12 mm (2.56 × 2.22 × 0.47 in.) max 

Screw terminal connector 
Table 8. Screw terminal connector specifications 

Parameter Specification 
Connector type Screw terminal 
Wire gauge range 16 AWG to 30 AWG 

Table 9. Screw terminal pinout 

Connector J2 
Pin Signal name Pin description 
1 AO0 Analog output 0 
2 AGND Analog ground 
3 AO1 Analog output 1 
4 AGND Analog ground 
5 VIO Digital supply voltage output (5V or 3.3V, depending on W3) 
6 DGND Digital ground 
Connector J3 
Pin Signal name Pin description 
7 DIO0 Digital I/O 0 
8 DIO1 Digital I/O 1 
9 DIO2 Digital I/O 2 
10 DIO3 Digital I/O 3 
11 DGND Digital ground 
12 DIO4 Digital I/O 4 
13 DIO5 Digital I/O 5 
14 DIO6 Digital I/O 6 
15 DIO7 Digital I/O 7 
16 DGND Digital ground 

 



MCC DAQ HAT Library Documentation, Release 1.4.0

1.6 MCC 172

The MCC 172 is a 2-channel analog voltage input board with the following features:

• Two 24-bit, 51.2 kS/s A/D converters (one per channel)

• ±5 V AC coupled differential analog inputs

• IEPE sensor support

• 10-32 and screw terminal connectors for the analog inputs

• ADC conversions can be synchronized between multiple boards

• Onboard sample buffers

• Digital trigger input

1.6.1 Board components

1.6.1.1 10-32 coaxial connectors

• CH0 and CH1 (CHx): Analog input connectors (do not connect an input source to the 10-32 connectors and
screw terminals at the same time).

1.6.1.2 Screw terminals

• CH0+/CH0- and CH1+/CH1- (CHx+/CHx-): Analog input terminals (do not connect an input source to the
10-32 connectors and screw terminals at the same time).

• Trigger (TRIG): External digital trigger input terminal. The trigger mode is software configurable for edge or
level sensitive, rising or falling edge, high or low level.

• DGND (GND): Digital ground for the trigger terminal.

1.6.1.3 Address jumpers

• A0 to A2: Used to identify each HAT when multiple boards are connected. The first HAT connected to the
Raspberry Pi must be at address 0 (no jumper). Install jumpers on each additional connected board to set the

1.6. MCC 172 33



MCC DAQ HAT Library Documentation, Release 1.4.0

desired address. Refer to the Installing multiple boards topic for more information about the recommended
addressing method.

1.6.1.4 Status LED

The LED turns on when the board is connected to a Raspberry Pi with external power applied and flashes when
communicating with the board. The LED may be blinked by the user.

1.6.1.5 Header connector

The board header is used to connect with the Raspberry Pi. Refer to Installing the DAQ HAT board for more informa-
tion about the header connector.

1.6.2 Functional block diagram

1.6.3 Functional details

1.6.3.1 ADC clock

The ADCs on a board share the same clock and are synchronized to start conversions at the same time for synchronous
data. The clock and synchronize signals may also be shared across the Raspberry Pi GPIO header to synchronize
multiple MCC 172s. The clock is programmable for various sampling rates between 51.2 kS/s and 200 S/s.

1.6.3.2 Trigger

The trigger input (terminal TRIG) is used to hold off the beginning of an analog input scan until the desired condition is
met at the trigger input. The trigger input signal may be a 3.3V or 5V TTL or CMOS logic signal. The input condition
may be rising edge, falling edge, high level, or low level. The trigger may also be shared across the Raspberry Pi GPIO
header to synchronize multiple MCC 172s.

34 Chapter 1. Hardware Overview



MCC DAQ HAT Library Documentation, Release 1.4.0

Due to the nature of the filtering in the A/D converters there is an input delay of 39 samples, so the data coming from
the converters at any time is delayed by 39 samples from the current time. This is most noticeable when using a trigger
- there will be approximately 39 samples prior to the trigger event in the captured data.

1.6.3.3 Alias Rejection

At low sampling rates, certain high frequency signals (at multiples of 128 * the sampling rate) can fall below the cutoff
frequency of the fixed analog anti-aliasing filter and create aliasing in the data. Using transducers with a bandwidth
lower than 100 kHz should not affect measurement results. Sampling at 10.24 kHz or higher will also ensure that the
anti-aliasing filter suppresses all signals that could alias into the data.

1.6.4 Firmware updates

Use the firmware update tool to update the firmware on your MCC 172 board(s). The “0” in the example below is the
board address. Repeat the command for each MCC 172 address in your board stack. This example demonstrates how
to update the firmware on the MCC 172 that is installed at address 0:

mcc172_firmware_update 0 ~/daqhats/tools/MCC_172.fw

1.6.5 Specifications

1.6. MCC 172 35



Electrical Specifications MCC 172 

ES MCC 172.docx Revision 2.0 
Page 1 of 4 10/29/20 

All specifications are subject to change without notice. 
Typical for 25 °C unless otherwise specified. 
Specifications in italic text are guaranteed by design. 

Analog input 
Table 1. General analog input specifications 

Parameter Conditions Specification 
Number of channels  2 
ADC resolution  24-bit 
A/D converter type  Delta sigma 
Sampling mode  Simultaneous 
Master timebase (fM) Frequency 26.2144 MHz 

Accuracy ±50 ppm max 
Master timebase sources   Internal clock 

 Shared clock from another MCC 172 
Data rates (fS)  (fM / 512) / n, n = 1, 2, …, 256 

51.2 kS/s max 
200 S/s min 

Input coupling   AC 
AC cutoff frequency  -3 dB: 0.78 Hz 

-0.1 dB: 5.2 Hz max 
Input voltage range  ±5 V 
Common-mode voltage range CHx to AGND ±2 V max 
Overvoltage protection CHx+ to CHx- ±35 V 

CHx- to ground ±3 V 
IEPE compliance voltage  23 V max 
IEPE excitation current  4.0 mA min 

4.1 mA typ 
Input delay 1 kHz to 23 kHz input 

frequency 
4.5 µs + 39 / fS 

Channel-to-channel matching Phase (200 Hz to 23 kHz) (fin * 0.022°) max 
Gain (20 Hz to 23 kHz) 0.19 dB typ 

Passband Frequency 0.453 * fS 
Flatness (20 Hz to 23 kHz) 52 mdB (pk-to-pk typ) 

Phase nonlinearity fS = 51.2 kS/s 
200 Hz to 23 kHz input 
frequency 

±0.36° max 

Stopband Frequency 0.547 * fS 
Rejection 99 dB min 

Alias-free bandwidth  0.453 * fS 
Alias rejection  100 dB @ 51.2 kS/s 
Oversample rate  128 * fS 
Crosstalk  1 kHz -122 dB 
SFDR fin = 1 kHz, -60 dBFS 120 dB 
Dynamic range fin = 1kHz, -1 dBFS 100 dB 
Input impedance Differential 202 kΩ 

CHx- (shield) to ground 50 Ω 
Throughput Single board 102.4 kS/s max (51.2 kS/s × 2 channels) 

Multiple boards Up to 307.2 kS/s aggregate (Note 1) 
Note 1:  Dependent on the load on the Raspberry Pi processor and the SPI interface. 



Electrical Specifications MCC 172 

ES MCC 172.docx Revision 2.0 
Page 2 of 4 10/29/20 

Note 2:  For best results, connect the signal source and the Raspberry Pi to a common ground. If a floating source is 
required, connect the MCC 172 to earth ground via the DGND screw terminal to minimize common mode 
noise. 

Accuracy 
Analog input AC voltage measurement accuracy 

Table 2. AC accuracy components and specifications. All values are (±) and apply to calibrated readings 

Gain error, max Offset error, max 
Gain temperature 
coefficient, max 

Offset temperature 
coefficient, max 

0.43% 5.10 mV 88 ppm/°C 184 µV/°C 

Noise performance 
Table 3. Noise performance specifications 

Idle Channel 51.2 kS/s 
Noise 33 µVrms 

Noise density 207 nV/√Hz 

Total harmonic distortion (THD) 
Table 4. Total harmonic distortion specifications 

Input Amplitude 1 kHz 8 kHz 
-1 dBFS -93 dB -91 dB 

-10.96 dBFS -87 dB -87 dB 

External digital trigger 
Table 5. External digital trigger specifications 

Parameter Specification 
Trigger source TRIG input 
Trigger mode Software configurable for rising or falling edge, or high or low level 
Trigger latency 1 µs + 1 sample period (1/fS) max 
Trigger pulse width 100 ns min 
Input type Schmitt trigger, 100 K pull-down to ground  
Input high voltage threshold 1.48 V min 
Input low voltage threshold 1.2 V max 
Input hysteresis 0.51 V min 
Input voltage limits 6.5 V absolute max 

–0.5 V absolute min 
0 V recommended min 

Memory 
Table 6. Memory specifications 

Parameter Specification 
Data FIFO 48 K (49,152) analog input samples 
Non-volatile memory 4 KB (ID and calibration storage, no user-modifiable memory) 



Electrical Specifications MCC 172 

ES MCC 172.docx Revision 2.0 
Page 3 of 4 10/29/20 

Power 
Table 7. Power specifications 

Parameter Conditions Specification 
Supply current, 5V supply Typical 100 mA 

Maximum  140 mA 

Interface specifications 
Table 8. Interface specifications 

Parameter Specification 
Raspberry Pi™ GPIO pins used GPIO 8, 9, 10, 11 (SPI interface) 

ID_SD, ID_SC (ID EEPROM) 
GPIO 12, 13, 26, (Board address) 
GPIO 5, 6, 19, 16, 20 (clock / trigger sharing, reset, IRQ) 

Data interface type SPI slave device, CE0 chip select 
SPI mode 1 
SPI clock rate 18 MHz, max 

Environmental 
Table 9. Environmental specifications  

Parameter Specification 
Operating temperature range 0 °C to 55 °C 
Storage temperature range –40 °C to 85 °C 
Humidity 0% to 90% non-condensing 

Mechanical 
Table 10. Mechanical specifications 

Parameter Specification 
Dimensions (L × W × H) 65 × 56.5 × 12 mm (2.56 × 2.22 × 0.47 in.) max 

Signal connectors 
Table 11. Analog input signal connector specifications 

Parameter Specification 
Connector types 10-32 coaxial / screw terminal (in parallel, only one source may be connected to a 

channel at a time) 
Coaxial input signals CH0: channel 0 input 

CH1: channel 1 input 
Screw terminal wire gauge 
range 

16 AWG to 30 AWG 



Electrical Specifications MCC 172 

ES MCC 172.docx Revision 2.0 
Page 4 of 4 10/29/20 

Table 12. Analog input screw terminal pinout 

Connector J2 
Pin Signal name Pin description 
1 CH0+ Channel 0 positive input 
2 CH0- Channel 0 negative input 
3 CH1+ Channel 1 positive input 
4 CH1- Channel 1 negative input 

Table 13. Trigger input screw terminal pinout 

Connector J5 
Pin Signal name Pin description 
1 TRIG Digital trigger input 
2 GND Digital ground 

 



MCC DAQ HAT Library Documentation, Release 1.4.0

40 Chapter 1. Hardware Overview



CHAPTER

TWO

INSTALLING THE DAQ HAT BOARD

2.1 Installing a single board

1. Power off the Raspberry Pi.

2. Locate the 4 standoffs. A typical standoff is shown here:

3. Attach the 4 standoffs to the Raspberry Pi by inserting the male threaded portion through the 4 corner holes on
the Raspberry Pi from the top and securing them with the included nuts from the bottom.

4. Install the 2x20 receptacle with extended leads (MCC provides a Samtec SSQ-120-03-T-D or equivalent) onto
the Raspberry Pi GPIO header by pressing the female portion of the receptacle onto the header pins, being
careful not to bend the leads of the receptacle. The 2x20 receptacle looks like:

5. The HAT must be at address 0. Remove any jumpers from the address header locations A0-A2 on the HAT
board.

6. Insert the HAT board onto the leads of the 2x20 receptacle so that the leads go into the holes on the bottom of
the HAT board and come out through the 2x20 connector on the top of the HAT board. The 4 mounting holes
in the corners of the HAT board must line up with the standoffs. Slide the HAT board down until it rests on the
standoffs.

7. Insert the included screws through the mounting holes on the HAT board into the threaded holes in the standoffs
and lightly tighten them.

41



MCC DAQ HAT Library Documentation, Release 1.4.0

2.2 Installing multiple boards

Follow steps 1-6 in the single board installation procedure for the first HAT board.

1. Connect all desired field wiring to the installed board - the screw terminals will not be accessible once
additional boards are installed above it.

2. Install the standoffs of the additional board by inserting the male threaded portions through the 4 corner holes
of the installed HAT board and threading them into the standoffs below.

3. Install the next 2x20 receptacle with extended leads onto the leads of the previous 2x20 receptacle by pressing
the female portion of the new receptacle onto the previous receptacle leads, being careful not to bend the leads
of either receptacle.

4. Install the appropriate address jumpers onto address header locations A0-A2 of the new HAT board. The rec-
ommended addressing method is to have the addresses increment from 0 as the boards are installed, i.e. 0, 1,
2, and so forth. There must always be a board at address 0. The jumpers are installed in this manner (install
jumpers where “Y” appears):

Address A0 A1 A2 Jumper Setting

0

1 Y

2 Y

3 Y Y

4 Y

5 Y Y

6 Y Y

7 Y Y Y

5. Insert the new HAT board onto the leads of the 2x20 receptacle so that the leads go into the holes on the bottom

42 Chapter 2. Installing the DAQ HAT board



MCC DAQ HAT Library Documentation, Release 1.4.0

of the HAT board and come out through the 2x20 connector on the top of the HAT board. The 4 mounting holes
in the corners of the HAT board must line up with the standoffs. Slide the HAT board down until it rests on the
standoffs.

6. Repeat steps 1-5 for each board to be added.

7. Insert the included screws through the mounting holes on the top HAT board into the threaded holes in the
standoffs and lightly tighten them.

2.2. Installing multiple boards 43



MCC DAQ HAT Library Documentation, Release 1.4.0

44 Chapter 2. Installing the DAQ HAT board



CHAPTER

THREE

INSTALLING AND USING THE LIBRARY

The project is hosted at https://github.com/mccdaq/daqhats.

3.1 Installation

1. Power off the Raspberry Pi then attach one or more HAT boards (see Installing the DAQ HAT board).

2. Power on the Pi and log in. Open a terminal window if using the graphical interface.

3. Update your package list:

sudo apt update

4. Optional: Update your installed packages and reboot:

sudo apt full-upgrade
sudo reboot

5. Install git (if not installed):

sudo apt install git

6. Download this package to your user folder with git:

cd ~
git clone https://github.com/mccdaq/daqhats.git

7. Build and install the shared library and optional Python support. The installer will ask if you want to install
Python 2 and Python 3 support. It will also detect the HAT board EEPROMs and save the contents if needed:

cd ~/daqhats
sudo ./install.sh

Note: If you encounter any errors during steps 5 - 7 then uininstall the daqhats library (if installed), go back to step 4,
update your installed packages and reboot, then repeat steps 5 - 7.

You can now run the example programs under ~/daqhats/examples and create your own programs.

If you are using the Raspbian desktop interface, the DAQ HAT Manager utility will be available under the Accessories
start menu. This utility will allow you to list the detected DAQ HATs, update the EEPROM files if you change your
board stack, and launch control applications for each DAQ HAT to perform simple operations. The code for these
programs is in the daqhats/tools/applications directory.

You may display a list of the detected boards at any time with the DAQ HAT Manager or the command:

45

https://github.com/mccdaq/daqhats


MCC DAQ HAT Library Documentation, Release 1.4.0

daqhats_list_boards

If you change your board stackup and have more than one HAT board attached you must update the saved EEPROM
images for the library to have the correct board information. You can use the DAQ HAT Manager or the command:

sudo daqhats_read_eeproms

To display the installed daqhats version use:

daqhats_version

To uninstall the package use:

cd ~/daqhats
sudo ./uninstall.sh

3.2 Firmware Updates

3.2.1 MCC 118

Use the firmware update tool to update the firmware on your MCC 118 board(s). The “0” in the example below is the
board address. Repeat the command for each MCC 118 address in your board stack. This example demonstrates how
to update the firmware on the MCC 118 that is installed at address 0:

mcc118_firmware_update 0 ~/daqhats/tools/MCC_118.hex

3.3 Creating a C program

• The daqhats headers are installed in /usr/local/include/daqhats. Add the compiler option -I/usr/local/
include in order to find the header files when compiling, and the include line #include <daqhats/
daqhats.h> to your source code.

• The shared library, libdaqhats.so, is installed in /usr/local/lib. Add the linker option -ldaqhats to include this
library.

• Study the example programs, example makefile, and library documentation for more information.

3.4 Creating a Python program

• The Python package is named daqhats. Use it in your code with import daqhats.

• Study the example programs and library documentation for more information.

46 Chapter 3. Installing and Using the Library



CHAPTER

FOUR

C LIBRARY REFERENCE

The C library is organized as a global function for listing the DAQ HAT boards attached to your system, and board-
specific functions to provide full functionality for each type of board. The library may be used with C and C++.

4.1 Global functions and data

4.1.1 Functions

Function Description
hat_list() Return a list of detected DAQ HAT boards.
hat_error_message() Return a text description for a DAQ HAT result.
hat_wait_for_interrupt() Wait for an interrupt to occur.
hat_interrupt_state() Read the current interrupt status.
hat_interrupt_callback_enable() Enable an interrupt callback function.
hat_interrupt_callback_disable() Disable interrupt callback function.

int hat_list(uint16_t filter_id, struct HatInfo * list)
Return a list of detected DAQ HAT boards.

It creates the list from the DAQ HAT EEPROM files that are currently on the system. In the case of a single
DAQ HAT at address 0 this information is automatically provided by Raspbian. However, when you have a
stack of multiple boards you must extract the EEPROM images using the daqhats_read_eeproms tool.

Example usage:

int count = hat_list(HAT_ID_ANY, NULL);

if (count > 0)
{

struct HatInfo* list = (struct HatInfo*)malloc(count *
sizeof(struct HatInfo));

hat_list(HAT_ID_ANY, list);

// perform actions with list

free(list);
}

Return The number of boards found.

Parameters

47



MCC DAQ HAT Library Documentation, Release 1.4.0

• filter_id: An optional ID filter to only return boards with a specific ID. Use HAT_ID_ANY to
return all boards.

• list: A pointer to a user-allocated array of struct HatInfo. The function will fill the structures with
information about the detected boards. You may have an array of the maximum number of boards
(MAX_NUMBER_HATS) or call this function while passing NULL for list, which will return the
count of boards found, then allocate the correct amount of memory and call this function again with a
valid pointer.

const char* hat_error_message(int result)
Return a text description for a DAQ HAT result code.

Return The error message.

Parameters

• result: The Result code returned from a DAQ HAT function

int hat_wait_for_interrupt(int timeout)
Wait for an interrupt to occur.

It waits for the interrupt signal to become active, with a timeout parameter.

This function only applies when using devices that can generate an interrupt:

• MCC 152

Return RESULT_TIMEOUT , RESULT_SUCCESS, or RESULT_UNDEFINED.

Parameters

• timeout: Wait timeout in milliseconds. -1 to wait forever, 0 to return immediately.

int hat_interrupt_state(void)
Read the current interrupt status.

It returns the status of the interrupt signal. This signal can be shared by multiple boards so the status of each
board that may generate must be read and the interrupt source(s) cleared before the interrupt will become inac-
tive.

This function only applies when using devices that can generate an interrupt:

• MCC 152

Return 1 if interrupt is active, 0 if inactive.

int hat_interrupt_callback_enable(void(*function)(void *), void * user_data)
Enable an interrupt callback function.

Set a function that will be called when a DAQ HAT interrupt occurs. The function must have a void return type
and void * argument, such as:

void function(void* user_data)

The function will be called when the DAQ HAT interrupt signal becomes active, and cannot be called again until
the interrupt signal becomes inactive. Active sources become inactive when manually cleared (such as reading
the digital I/O inputs or clearing the interrupt enable.) If not latched, an active source also becomes inactive
when the value returns to the original value (the value at the source before the interrupt was generated.)

The user_data argument can be used for passing a reference to anything needed by the callback function. It will
be passed to the callback function when the interrupt occurs. Set it to NULL if not needed.

48 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

There may only be one callback function at a time; if you call this when a function is already set as the callback
function then it will be replaced with the new function and the old function will no longer be called if an interrupt
occurs.

The callback function may be disabled with hat_interrupt_callback_disable().

This function only applies when using devices that can generate an interrupt:

• MCC 152

Return RESULT_SUCCESS or RESULT_UNDEFINED.

Parameters

• function: The callback function.

• user_data: The data to pass to the callback function.

int hat_interrupt_callback_disable(void)
Disable interrupt callbacks.

Removes any callback function from the interrupt handler.

Return RESULT_SUCCESS or RESULT_UNDEFINED.

4.1.2 Data types and definitions

MAX_NUMBER_HATS 8
The maximum number of DAQ HATs that may be connected.

4.1.2.1 HAT IDs

enum HatIDs
Known DAQ HAT IDs.

Values:

HAT_ID_ANY = 0
Match any DAQ HAT ID in hat_list().

HAT_ID_MCC_118 = 0x0142
MCC 118 ID.

HAT_ID_MCC_118_BOOTLOADER = 0x8142
MCC 118 in firmware update mode ID.

HAT_ID_MCC_128 = 0x0146
MCC 128 ID.

HAT_ID_MCC_134 = 0x0143
MCC 134 ID.

HAT_ID_MCC_152 = 0x0144
MCC 152 ID.

HAT_ID_MCC_172 = 0x0145
MCC 172 ID.

4.1. Global functions and data 49



MCC DAQ HAT Library Documentation, Release 1.4.0

4.1.2.2 Result Codes

enum ResultCode
Return values from the library functions.

Values:

RESULT_SUCCESS = 0
Success, no errors.

RESULT_BAD_PARAMETER = -1
A parameter passed to the function was incorrect.

RESULT_BUSY = -2
The device is busy.

RESULT_TIMEOUT = -3
There was a timeout accessing a resource.

RESULT_LOCK_TIMEOUT = -4
There was a timeout while obtaining a resource lock.

RESULT_INVALID_DEVICE = -5
The device at the specified address is not the correct type.

RESULT_RESOURCE_UNAVAIL = -6
A needed resource was not available.

RESULT_COMMS_FAILURE = -7
Could not communicate with the device.

RESULT_UNDEFINED = -10
Some other error occurred.

4.1.2.3 HatInfo structure

struct HatInfo
Contains information about a specific board.

Public Members

uint8_t address
The board address.

uint16_t id
The product ID, one of HatIDs.

uint16_t version
The hardware version.

char HatInfo::product_name[256]
The product name.

4.1.2.4 Analog Input / Scan Option Flags

See individual function documentation for detailed usage information.

OPTS_DEFAULT (0x0000)
Default behavior.

50 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

OPTS_NOSCALEDATA (0x0001)
Read / write unscaled data.

OPTS_NOCALIBRATEDATA (0x0002)
Read / write uncalibrated data.

OPTS_EXTCLOCK (0x0004)
Use an external clock source.

OPTS_EXTTRIGGER (0x0008)
Use an external trigger source.

OPTS_CONTINUOUS (0x0010)
Run until explicitly stopped.

4.1.2.5 Scan Status Flags

STATUS_HW_OVERRUN (0x0001)
A hardware overrun occurred.

STATUS_BUFFER_OVERRUN (0x0002)
A scan buffer overrun occurred.

STATUS_TRIGGERED (0x0004)
The trigger event occurred.

STATUS_RUNNING (0x0008)
The scan is running (actively acquiring data.)

4.1.2.6 Trigger Modes

enum TriggerMode
Scan trigger input modes.

Values:

TRIG_RISING_EDGE = 0
Start the scan on a rising edge of TRIG.

TRIG_FALLING_EDGE = 1
Start the scan on a falling edge of TRIG.

TRIG_ACTIVE_HIGH = 2
Start the scan any time TRIG is high.

TRIG_ACTIVE_LOW = 3
Start the scan any time TRIG is low.

4.1. Global functions and data 51



MCC DAQ HAT Library Documentation, Release 1.4.0

4.2 MCC 118 functions and data

4.2.1 Functions

Function Description
mcc118_open() Open an MCC 118 for use.
mcc118_is_open() Check if an MCC 118 is open.
mcc118_close() Close an MCC 118.
mcc118_info() Return information about this device type.
mcc118_blink_led() Blink the MCC 118 LED.
mcc118_firmware_version() Get the firmware version.
mcc118_serial() Read the serial number.
mcc118_calibration_date() Read the calibration date.
mcc118_calibration_coefficient_read() Read the calibration coefficients for a channel.
mcc118_calibration_coefficient_write() Write the calibration coefficients for a channel.
mcc118_a_in_read() Read an analog input value.
mcc118_trigger_mode() Set the external trigger input mode.
mcc118_a_in_scan_actual_rate() Read the actual sample rate for a set of scan parameters.
mcc118_a_in_scan_start() Start a hardware-paced analog input scan.
mcc118_a_in_scan_buffer_size() Read the size of the internal scan data buffer.
mcc118_a_in_scan_status() Read the scan status.
mcc118_a_in_scan_read() Read scan data and status.
mcc118_a_in_scan_channel_count() Get the number of channels in the current scan.
mcc118_a_in_scan_stop() Stop the scan.
mcc118_a_in_scan_cleanup() Free scan resources.

int mcc118_open(uint8_t address)
Open a connection to the MCC 118 device at the specified address.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7).

int mcc118_close(uint8_t address)
Close a connection to an MCC 118 device and free allocated resources.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7).

int mcc118_is_open(uint8_t address)
Check if an MCC 118 is open.

Return 1 if open, 0 if not open.

Parameters

• address: The board address (0 - 7).

52 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

struct MCC118DeviceInfo* mcc118_info(void)
Return constant device information for all MCC 118s.

Return Pointer to struct MCC118DeviceInfo.

int mcc118_blink_led(uint8_t address, uint8_t count)
Blink the LED on the MCC 118.

Passing 0 for count will result in the LED blinking continuously until the board is reset or mcc118_blink_led()
is called again with a non-zero value for count.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7).

• count: The number of times to blink (0 - 255).

int mcc118_firmware_version(uint8_t address, uint16_t * version, uint16_t * boot_version)
Return the board firmware and bootloader versions.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• version: Receives the firmware version. The version will be in BCD hexadecimal with the high
byte as the major version and low byte as minor, i.e. 0x0103 is version 1.03.

• boot_version: Receives the bootloader version. The version will be in BCD hexadecimal as
above.

int mcc118_serial(uint8_t address, char * buffer)
Read the MCC 118 serial number.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• buffer: Pass a user-allocated buffer pointer to receive the serial number as a string. The buffer must
be at least 9 characters in length.

int mcc118_calibration_date(uint8_t address, char * buffer)
Read the MCC 118 calibration date.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• buffer: Pass a user-allocated buffer pointer to receive the date as a string (format “YYYY-MM-
DD”). The buffer must be at least 11 characters in length.

4.2. MCC 118 functions and data 53



MCC DAQ HAT Library Documentation, Release 1.4.0

int mcc118_calibration_coefficient_read(uint8_t address, uint8_t channel, double * slope, dou-
ble * offset)

Read the MCC 118 calibration coefficients for a single channel.

The coefficients are applied in the library as:

calibrated_ADC_code = (raw_ADC_code * slope) + offset

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The channel number (0 - 7).

• slope: Receives the slope.

• offset: Receives the offset.

int mcc118_calibration_coefficient_write(uint8_t address, uint8_t channel, double slope, dou-
ble offset)

Temporarily write the MCC 118 calibration coefficients for a single channel.

The user can apply their own calibration coefficients by writing to these values. The values will reset to the
factory values from the EEPROM whenever mcc118_open() is called. This function will fail and return RE-
SULT_BUSY if a scan is active when it is called.

The coefficients are applied in the library as:

calibrated_ADC_code = (raw_ADC_code * slope) + offset

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The channel number (0 - 7).

• slope: The new slope value.

• offset: The new offset value.

int mcc118_a_in_read(uint8_t address, uint8_t channel, uint32_t options, double * value)
Perform a single reading of an analog input channel and return the value.

The valid options are:

• OPTS_NOSCALEDATA: Return ADC code (a value between 0 and 4095) rather than voltage.

• OPTS_NOCALIBRATEDATA: Return data without the calibration factors applied.

The options parameter is set to 0 or OPTS_DEFAULT for default operation, which is scaled and calibrated data.

Multiple options may be specified by ORing the flags. For instance, specifying OPTS_NOSCALEDATA |
OPTS_NOCALIBRATEDATA will return the value read from the ADC without calibration or converting to volt-
age.

The function will return RESULT_BUSY if called while a scan is running.

Return Result code, RESULT_SUCCESS if successful.

Parameters

54 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

• address: The board address (0 - 7). Board must already be opened.

• channel: The analog input channel number, 0 - 7.

• options: Options bitmask.

• value: Receives the analog input value.

int mcc118_trigger_mode(uint8_t address, uint8_t mode)
Set the trigger input mode.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• mode: One of the trigger mode values.

int mcc118_a_in_scan_actual_rate(uint8_t channel_count, double sample_rate_per_channel, dou-
ble * actual_sample_rate_per_channel)

Read the actual sample rate per channel for a requested sample rate.

The internal scan clock is generated from a 16 MHz clock source so only discrete frequency steps can be
achieved. This function will return the actual rate for a requested channel count and rate. This function does not
perform any actions with a board, it simply calculates the rate.

Return Result code, RESULT_SUCCESS if successful, RESULT_BAD_PARAMETER if the scan parameters
are not achievable on an MCC 118.

Parameters

• channel_count: The number of channels in the scan.

• sample_rate_per_channel: The desired sampling rate in samples per second per channel, max
100,000.

• actual_sample_rate_per_channel: The actual sample rate that would occur when request-
ing this rate on an MCC 118, or 0 if there is an error.

int mcc118_a_in_scan_start(uint8_t address, uint8_t channel_mask, uint32_t samples_per_channel,
double sample_rate_per_channel, uint32_t options)

Start a hardware-paced analog input scan.

The scan runs as a separate thread from the user’s code. The function will allocate a scan buffer and read
data from the device into that buffer. The user reads the data from this buffer and the scan status using the
mcc118_a_in_scan_read() function. mcc118_a_in_scan_stop() is used to stop a continuous scan, or to stop a
finite scan before it completes. The user must call mcc118_a_in_scan_cleanup() after the scan has finished and
all desired data has been read; this frees all resources from the scan and allows additional scans to be performed.

The scan state has defined terminology:

• Active: mcc118_a_in_scan_start() has been called and the device may be acquiring data or finished with
the acquisition. The scan has not been cleaned up by calling mcc118_a_in_scan_cleanup(), so another
scan may not be started.

• Running: The scan is active and the device is still acquiring data. Certain functions like
mcc118_a_in_read() will return an error because the device is busy.

The valid options are:

• OPTS_NOSCALEDATA: Returns ADC code (a value between 0 and 4095) rather than voltage.

4.2. MCC 118 functions and data 55



MCC DAQ HAT Library Documentation, Release 1.4.0

• OPTS_NOCALIBRATEDATA: Return data without the calibration factors applied.

• OPTS_EXTCLOCK: Use an external 3.3V or 5V logic signal at the CLK input as the scan clock. Multiple
devices can be synchronized by connecting the CLK pins together and using this option on all but one
device so they will be clocked by the single device using its internal clock. sample_rate_per_channel is
only used for buffer sizing.

• OPTS_EXTTRIGGER: Hold off the scan (after calling mcc118_a_in_scan_start()) until the trigger condi-
tion is met. The trigger is a 3.3V or 5V logic signal applied to the TRIG pin.

• OPTS_CONTINUOUS: Scans continuously until stopped by the user by calling mcc118_a_in_scan_stop()
and writes data to a circular buffer. The data must be read before being overwritten to avoid a buffer
overrun error. samples_per_channel is only used for buffer sizing.

The options parameter is set to 0 or OPTS_DEFAULT for default operation, which is scaled and calibrated data,
internal scan clock, no trigger, and finite operation.

Multiple options may be specified by ORing the flags. For instance, specifying OPTS_NOSCALEDATA |
OPTS_NOCALIBRATEDATA will return the values read from the ADC without calibration or converting to
voltage.

The buffer size will be allocated as follows:

Finite mode: Total number of samples in the scan

Continuous mode (buffer size is per channel): Either samples_per_channel or the value in the following table,
whichever is greater

Sample Rate Buffer Size (per channel)
Not specified 10 kS
0-100 S/s 1 kS
100-10k S/s 10 kS
10k-100k S/s 100 kS

Specifying a very large value for samples_per_channel could use too much of the Raspberry Pi memory. If
the memory allocation fails, the function will return RESULT_RESOURCE_UNAVAIL. The allocation could
succeed, but the lack of free memory could cause other problems in the Raspberry Pi. If you need to acquire a
high number of samples then it is better to run the scan in continuous mode and stop it when you have acquired
the desired amount of data. If a scan is already active this function will return RESULT_BUSY .

Return Result code, RESULT_SUCCESS if successful, RESULT_BUSY if a scan is already active.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel_mask: A bit mask of the channels to be scanned. Set each bit to enable the associated
channel (0x01 - 0xFF.)

• samples_per_channel: The number of samples to acquire for each channel in the scan (finite
mode,) or can be used to set a larger scan buffer size than the default value (continuous mode.)

• sample_rate_per_channel: The sampling rate in samples per second per channel, max
100,000. When using an external sample clock set this value to the maximum expected rate of the
clock.

• options: The options bitmask.

int mcc118_a_in_scan_buffer_size(uint8_t address, uint32_t * buffer_size_samples)
Returns the size of the internal scan data buffer.

56 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

An internal data buffer is allocated for the scan when mcc118_a_in_scan_start() is called. This function returns
the total size of that buffer in samples.

Return Result code, RESULT_SUCCESS if successful, RESULT_RESOURCE_UNAVAIL if a scan is not cur-
rently active, RESULT_BAD_PARAMETER if the address is invalid or buffer_size_samples is NULL.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• buffer_size_samples: Receives the size of the buffer in samples. Each sample is a double.

int mcc118_a_in_scan_status(uint8_t address, uint16_t * status, uint32_t * samples_per_channel)
Reads status and number of available samples from an analog input scan.

The scan is started with mcc118_a_in_scan_start() and runs in a background thread that reads the data from
the board into an internal scan buffer. This function reads the status of the scan and amount of data in the scan
buffer.

Return Result code, RESULT_SUCCESS if successful, RESULT_RESOURCE_UNAVAIL if a scan has not been
started under this instance of the device.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• status: Receives the scan status, an ORed combination of the flags:

– STATUS_HW_OVERRUN: The device scan buffer was not read fast enough and data was lost.

– STATUS_BUFFER_OVERRUN: The thread scan buffer was not read by the user fast enough and
data was lost.

– STATUS_TRIGGERED: The trigger conditions have been met.

– STATUS_RUNNING: The scan is running.

• samples_per_channel: Receives the number of samples per channel available in the scan thread
buffer.

int mcc118_a_in_scan_read(uint8_t address, uint16_t * status, int32_t samples_per_channel, dou-
ble timeout, double * buffer, uint32_t buffer_size_samples, uint32_t * sam-
ples_read_per_channel)

Reads status and multiple samples from an analog input scan.

The scan is started with mcc118_a_in_scan_start() and runs in a background thread that reads the data from the
board into an internal scan buffer. This function reads the data from the scan buffer, and returns the current scan
status.

Return Result code, RESULT_SUCCESS if successful, RESULT_RESOURCE_UNAVAIL if a scan is not active.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• status: Receives the scan status, an ORed combination of the flags:

– STATUS_HW_OVERRUN: The device scan buffer was not read fast enough and data was lost.

– STATUS_BUFFER_OVERRUN: The thread scan buffer was not read by the user fast enough and
data was lost.

– STATUS_TRIGGERED: The trigger conditions have been met.

4.2. MCC 118 functions and data 57



MCC DAQ HAT Library Documentation, Release 1.4.0

– STATUS_RUNNING: The scan is running.

• samples_per_channel: The number of samples per channel to read. Specify -1 to read all
available samples in the scan thread buffer, ignoring timeout. If buffer does not contain enough
space then the function will read as many samples per channel as will fit in buffer.

• timeout: The amount of time in seconds to wait for the samples to be read. Specify a negative
number to wait indefinitely or 0 to return immediately with whatever samples are available (up to the
value of samples_per_channel or buffer_size_samples.)

• buffer: The user data buffer that receives the samples.

• buffer_size_samples: The size of the buffer in samples. Each sample is a double.

• samples_read_per_channel: Returns the actual number of samples read from each channel.

int mcc118_a_in_scan_channel_count(uint8_t address)
Return the number of channels in the current analog input scan.

This function returns 0 if no scan is active.

Return The number of channels, 0 - 8.

Parameters

• address: The board address (0 - 7). Board must already be opened.

int mcc118_a_in_scan_stop(uint8_t address)
Stops an analog input scan.

The scan is stopped immediately. The scan data that has been read into the scan buffer is available until
mcc118_a_in_scan_cleanup() is called.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

int mcc118_a_in_scan_cleanup(uint8_t address)
Free analog input scan resources after the scan is complete.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

4.2.2 Data definitions

4.2.2.1 Device Info

struct MCC118DeviceInfo
MCC 118 constant device information.

58 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

Public Members

const uint8_t NUM_AI_CHANNELS
The number of analog input channels (8.)

const uint16_t AI_MIN_CODE
The minimum ADC code (0.)

const uint16_t AI_MAX_CODE
The maximum ADC code (4095.)

const double AI_MIN_VOLTAGE
The input voltage corresponding to the minimum code (-10.0V.)

const double AI_MAX_VOLTAGE
The input voltage corresponding to the maximum code (+10.0V - 1 LSB.)

const double AI_MIN_RANGE
The minimum voltage of the input range (-10.0V.)

const double AI_MAX_RANGE
The maximum voltage of the input range (+10.0V.)

4.3 MCC 128 functions and data

4.3.1 Functions

Function Description
mcc128_open() Open an MCC 128 for use.
mcc128_is_open() Check if an MCC 128 is open.
mcc128_close() Close an MCC 128.
mcc128_info() Return information about this device type.
mcc128_blink_led() Blink the MCC 128 LED.
mcc128_firmware_version() Get the firmware version.
mcc128_serial() Read the serial number.
mcc128_calibration_date() Read the calibration date.
mcc128_calibration_coefficient_read() Read the calibration coefficients for a channel.
mcc128_calibration_coefficient_write() Write the calibration coefficients for a channel.
mcc128_trigger_mode() Set the external trigger input mode.
mcc128_a_in_mode_read() Read the analog input mode.
mcc128_a_in_mode_write() Write the analog input mode.
mcc128_a_in_range_read() Read the analog input range.
mcc128_a_in_range_write() Write the analog input range.
mcc128_a_in_read() Read an analog input value.
mcc128_a_in_scan_actual_rate() Read the actual sample rate for a set of scan parameters.
mcc128_a_in_scan_start() Start a hardware-paced analog input scan.
mcc128_a_in_scan_buffer_size() Read the size of the internal scan data buffer.
mcc128_a_in_scan_status() Read the scan status.
mcc128_a_in_scan_read() Read scan data and status.
mcc128_a_in_scan_channel_count() Get the number of channels in the current scan.
mcc128_a_in_scan_stop() Stop the scan.
mcc128_a_in_scan_cleanup() Free scan resources.

4.3. MCC 128 functions and data 59



MCC DAQ HAT Library Documentation, Release 1.4.0

int mcc128_open(uint8_t address)
Open a connection to the MCC 128 device at the specified address.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7).

int mcc128_close(uint8_t address)
Close a connection to an MCC 128 device and free allocated resources.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7).

int mcc128_is_open(uint8_t address)
Check if an MCC 128 is open.

Return 1 if open, 0 if not open.

Parameters

• address: The board address (0 - 7).

struct MCC128DeviceInfo* mcc128_info(void)
Return constant device information for all MCC 128s.

Return Pointer to struct MCC128DeviceInfo.

int mcc128_blink_led(uint8_t address, uint8_t count)
Blink the LED on the MCC 128.

Passing 0 for count will result in the LED blinking continuously until the board is reset or mcc128_blink_led()
is called again with a non-zero value for count.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7).

• count: The number of times to blink (0 - 255).

int mcc128_firmware_version(uint8_t address, uint16_t * version)
Return the board firmware version.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• version: Receives the firmware version. The version will be in BCD hexadecimal with the high
byte as the major version and low byte as minor, i.e. 0x0103 is version 1.03.

int mcc128_serial(uint8_t address, char * buffer)
Read the MCC 128 serial number.

60 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• buffer: Pass a user-allocated buffer pointer to receive the serial number as a string. The buffer must
be at least 9 characters in length.

int mcc128_calibration_date(uint8_t address, char * buffer)
Read the MCC 128 calibration date.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• buffer: Pass a user-allocated buffer pointer to receive the date as a string (format “YYYY-MM-
DD”). The buffer must be at least 11 characters in length.

int mcc128_calibration_coefficient_read(uint8_t address, uint8_t range, double * slope, double
* offset)

Read the MCC 128 calibration coefficients for a specified input range.

The coefficients are applied in the library as:

calibrated_ADC_code = (raw_ADC_code * slope) + offset

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• range: The input range, one of the input range values.

• slope: Receives the slope.

• offset: Receives the offset.

int mcc128_calibration_coefficient_write(uint8_t address, uint8_t range, double slope, dou-
ble offset)

Temporarily write the MCC 128 calibration coefficients for a specified input range.

The user can apply their own calibration coefficients by writing to these values. The values will reset to the
factory values from the EEPROM whenever mcc128_open() is called. This function will fail and return RE-
SULT_BUSY if a scan is active when it is called.

The coefficients are applied in the library as:

calibrated_ADC_code = (raw_ADC_code * slope) + offset

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• range: The input range, one of the input range values.

• slope: The new slope value.

4.3. MCC 128 functions and data 61



MCC DAQ HAT Library Documentation, Release 1.4.0

• offset: The new offset value.

int mcc128_a_in_mode_read(uint8_t address, uint8_t * mode)
Read the analog input mode.

Reads the current analog input mode.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• mode: Receives the input mode.

int mcc128_a_in_mode_write(uint8_t address, uint8_t mode)
Set the analog input mode.

This sets the analog inputs to one of the valid values:

• A_IN_MODE_SE: Single-ended (8 inputs relative to ground.)

• A_IN_MODE_DIFF: Differential (4 channels with positive and negative inputs.)

This function will fail and return RESULT_BUSY if a scan is active when it is called.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• mode: One of the input mode values.

int mcc128_a_in_range_read(uint8_t address, uint8_t * range)
Read the analog input range.

Returns the current analog input range.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• range: Receives the input range.

int mcc128_a_in_range_write(uint8_t address, uint8_t range)
Set the analog input range.

This sets the analog input range to one of the valid ranges:

• A_IN_RANGE_BIP_10V: +/- 10V

• A_IN_RANGE_BIP_5V: +/- 5V

• A_IN_RANGE_BIP_2V: +/- 2V

• A_IN_RANGE_BIP_1V: +/- 1V

This function will fail and return RESULT_BUSY if a scan is active when it is called.

Return Result code, RESULT_SUCCESS if successful.

Parameters

62 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

• address: The board address (0 - 7). Board must already be opened.

• range: One of the input range values.

int mcc128_trigger_mode(uint8_t address, uint8_t mode)
Set the trigger input mode.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• mode: One of the trigger mode values.

int mcc128_a_in_read(uint8_t address, uint8_t channel, uint32_t options, double * value)
Perform a single reading of an analog input channel and return the value.

The valid options are:

• OPTS_NOSCALEDATA: Return ADC code (a value between 0 and 65535) rather than voltage.

• OPTS_NOCALIBRATEDATA: Return data without the calibration factors applied.

The options parameter is set to 0 or OPTS_DEFAULT for default operation, which is scaled and calibrated data.

Multiple options may be specified by ORing the flags. For instance, specifying OPTS_NOSCALEDATA |
OPTS_NOCALIBRATEDATA will return the value read from the ADC without calibration or converting to volt-
age.

The function will return RESULT_BUSY if called while a scan is running.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The analog input channel number, 0 - 7.

• options: Options bitmask.

• value: Receives the analog input value.

int mcc128_a_in_scan_actual_rate(uint8_t channel_count, double sample_rate_per_channel, dou-
ble * actual_sample_rate_per_channel)

Read the actual sample rate per channel for a requested sample rate.

The internal scan clock is generated from a 16 MHz clock source so only discrete frequency steps can be
achieved. This function will return the actual rate for a requested channel count and rate. This function does not
perform any actions with a board, it simply calculates the rate.

Return Result code, RESULT_SUCCESS if successful, RESULT_BAD_PARAMETER if the scan parameters
are not achievable on an MCC 128.

Parameters

• channel_count: The number of channels in the scan.

• sample_rate_per_channel: The desired sampling rate in samples per second per channel, max
100,000.

• actual_sample_rate_per_channel: The actual sample rate that would occur when request-
ing this rate on an MCC 128, or 0 if there is an error.

4.3. MCC 128 functions and data 63



MCC DAQ HAT Library Documentation, Release 1.4.0

int mcc128_a_in_scan_start(uint8_t address, uint8_t channel_mask, uint32_t samples_per_channel,
double sample_rate_per_channel, uint32_t options)

Start a hardware-paced analog input scan.

The scan runs as a separate thread from the user’s code. The function will allocate a scan buffer and read
data from the device into that buffer. The user reads the data from this buffer and the scan status using the
mcc128_a_in_scan_read() function. mcc128_a_in_scan_stop() is used to stop a continuous scan, or to stop a
finite scan before it completes. The user must call mcc128_a_in_scan_cleanup() after the scan has finished and
all desired data has been read; this frees all resources from the scan and allows additional scans to be performed.

The scan state has defined terminology:

• Active: mcc128_a_in_scan_start() has been called and the device may be acquiring data or finished with
the acquisition. The scan has not been cleaned up by calling mcc128_a_in_scan_cleanup(), so another
scan may not be started.

• Running: The scan is active and the device is still acquiring data. Certain functions like
mcc128_a_in_read() will return an error because the device is busy.

The valid options are:

• OPTS_NOSCALEDATA: Returns ADC code (a value between 0 and 65535) rather than voltage.

• OPTS_NOCALIBRATEDATA: Return data without the calibration factors applied.

• OPTS_EXTCLOCK: Use an external 3.3V or 5V logic signal at the CLK input as the scan clock. Multiple
devices can be synchronized by connecting the CLK pins together and using this option on all but one
device so they will be clocked by the single device using its internal clock. sample_rate_per_channel is
only used for buffer sizing.

• OPTS_EXTTRIGGER: Hold off the scan (after calling mcc128_a_in_scan_start()) until the trigger condi-
tion is met. The trigger is a 3.3V or 5V logic signal applied to the TRIG pin.

• OPTS_CONTINUOUS: Scans continuously until stopped by the user by calling mcc128_a_in_scan_stop()
and writes data to a circular buffer. The data must be read before being overwritten to avoid a buffer
overrun error. samples_per_channel is only used for buffer sizing.

The options parameter is set to 0 or OPTS_DEFAULT for default operation, which is scaled and calibrated data,
internal scan clock, no trigger, and finite operation.

Multiple options may be specified by ORing the flags. For instance, specifying OPTS_NOSCALEDATA |
OPTS_NOCALIBRATEDATA will return the values read from the ADC without calibration or converting to
voltage.

The buffer size will be allocated as follows:

Finite mode: Total number of samples in the scan

Continuous mode (buffer size is per channel): Either samples_per_channel or the value in the following table,
whichever is greater

Sample Rate Buffer Size (per channel)
Not specified 10 kS
0-100 S/s 1 kS
100-10k S/s 10 kS
10k-100k S/s 100 kS

Specifying a very large value for samples_per_channel could use too much of the Raspberry Pi memory. If
the memory allocation fails, the function will return RESULT_RESOURCE_UNAVAIL. The allocation could
succeed, but the lack of free memory could cause other problems in the Raspberry Pi. If you need to acquire a

64 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

high number of samples then it is better to run the scan in continuous mode and stop it when you have acquired
the desired amount of data. If a scan is already active this function will return RESULT_BUSY .

Return Result code, RESULT_SUCCESS if successful, RESULT_BUSY if a scan is already active.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel_mask: A bit mask of the channels to be scanned. Set each bit to enable the associated
channel (0x01 - 0xFF.)

• samples_per_channel: The number of samples to acquire for each channel in the scan (finite
mode,) or can be used to set a larger scan buffer size than the default value (continuous mode.)

• sample_rate_per_channel: The sampling rate in samples per second per channel, max
100,000. When using an external sample clock set this value to the maximum expected rate of the
clock.

• options: The options bitmask.

int mcc128_a_in_scan_buffer_size(uint8_t address, uint32_t * buffer_size_samples)
Returns the size of the internal scan data buffer.

An internal data buffer is allocated for the scan when mcc128_a_in_scan_start() is called. This function returns
the total size of that buffer in samples.

Return Result code, RESULT_SUCCESS if successful, RESULT_RESOURCE_UNAVAIL if a scan is not cur-
rently active, RESULT_BAD_PARAMETER if the address is invalid or buffer_size_samples is NULL.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• buffer_size_samples: Receives the size of the buffer in samples. Each sample is a double.

int mcc128_a_in_scan_status(uint8_t address, uint16_t * status, uint32_t * samples_per_channel)
Reads status and number of available samples from an analog input scan.

The scan is started with mcc128_a_in_scan_start() and runs in a background thread that reads the data from
the board into an internal scan buffer. This function reads the status of the scan and amount of data in the scan
buffer.

Return Result code, RESULT_SUCCESS if successful, RESULT_RESOURCE_UNAVAIL if a scan has not been
started under this instance of the device.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• status: Receives the scan status, an ORed combination of the flags:

– STATUS_HW_OVERRUN: The device scan buffer was not read fast enough and data was lost.

– STATUS_BUFFER_OVERRUN: The thread scan buffer was not read by the user fast enough and
data was lost.

– STATUS_TRIGGERED: The trigger conditions have been met.

– STATUS_RUNNING: The scan is running.

• samples_per_channel: Receives the number of samples per channel available in the scan thread
buffer.

4.3. MCC 128 functions and data 65



MCC DAQ HAT Library Documentation, Release 1.4.0

int mcc128_a_in_scan_read(uint8_t address, uint16_t * status, int32_t samples_per_channel, dou-
ble timeout, double * buffer, uint32_t buffer_size_samples, uint32_t * sam-
ples_read_per_channel)

Reads status and multiple samples from an analog input scan.

The scan is started with mcc128_a_in_scan_start() and runs in a background thread that reads the data from the
board into an internal scan buffer. This function reads the data from the scan buffer, and returns the current scan
status.

Return Result code, RESULT_SUCCESS if successful, RESULT_RESOURCE_UNAVAIL if a scan is not active.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• status: Receives the scan status, an ORed combination of the flags:

– STATUS_HW_OVERRUN: The device scan buffer was not read fast enough and data was lost.

– STATUS_BUFFER_OVERRUN: The thread scan buffer was not read by the user fast enough and
data was lost.

– STATUS_TRIGGERED: The trigger conditions have been met.

– STATUS_RUNNING: The scan is running.

• samples_per_channel: The number of samples per channel to read. Specify -1 to read all
available samples in the scan thread buffer, ignoring timeout. If buffer does not contain enough
space then the function will read as many samples per channel as will fit in buffer.

• timeout: The amount of time in seconds to wait for the samples to be read. Specify a negative
number to wait indefinitely or 0 to return immediately with whatever samples are available (up to the
value of samples_per_channel or buffer_size_samples.)

• buffer: The user data buffer that receives the samples.

• buffer_size_samples: The size of the buffer in samples. Each sample is a double.

• samples_read_per_channel: Returns the actual number of samples read from each channel.

int mcc128_a_in_scan_channel_count(uint8_t address)
Return the number of channels in the current analog input scan.

This function returns 0 if no scan is active.

Return The number of channels, 0 - 8.

Parameters

• address: The board address (0 - 7). Board must already be opened.

int mcc128_a_in_scan_stop(uint8_t address)
Stops an analog input scan.

The scan is stopped immediately. The scan data that has been read into the scan buffer is available until
mcc128_a_in_scan_cleanup() is called.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

66 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

int mcc128_a_in_scan_cleanup(uint8_t address)
Free analog input scan resources after the scan is complete.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

4.3.2 Data definitions

4.3.2.1 Device Info

struct MCC128DeviceInfo
MCC 128 constant device information.

Public Members

const uint8_t NUM_AI_MODES
The number of analog input modes (2.)

const uint8_t MCC128DeviceInfo::NUM_AI_CHANNELS[2]
The number of analog input channels in each mode (8, 4.)

const uint16_t AI_MIN_CODE
The minimum ADC code (0.)

const uint16_t AI_MAX_CODE
The maximum ADC code (65535.)

const uint8_t NUM_AI_RANGES
The number of analog input ranges (4.)

const double MCC128DeviceInfo::AI_MIN_VOLTAGE[4]
The input voltage corresponding to the minimum code in each range (-10.0V, -5.0V, -2.0V, -1.0V.)

const double MCC128DeviceInfo::AI_MAX_VOLTAGE[4]
The input voltage corresponding to the maximum code in each range (+10.0V - 1 LSB, +5.0V - 1 LSB,
+2.0V - 1 LSB, +1.0V - 1 LSB.)

const double MCC128DeviceInfo::AI_MIN_RANGE[4]
The minimum voltage of the input range in each range (-10.0V, -5.0V, -2.0V, -1.0V.)

const double MCC128DeviceInfo::AI_MAX_RANGE[4]
The maximum voltage of the input range in each range (+10.0V, +5.0V, +2.0V, +1.0V.)

4.3.2.2 Analog Input Modes

enum AnalogInputMode
Analog input modes.

Values:

A_IN_MODE_SE = 0
Single-ended.

A_IN_MODE_DIFF = 1
Differential.

4.3. MCC 128 functions and data 67



MCC DAQ HAT Library Documentation, Release 1.4.0

4.3.2.3 Analog Input Ranges

enum AnalogInputRange
Analog input ranges.

Values:

A_IN_RANGE_BIP_10V = 0
+/- 10 V

A_IN_RANGE_BIP_5V = 1
+/- 5 V

A_IN_RANGE_BIP_2V = 2
+/- 2 V

A_IN_RANGE_BIP_1V = 3
+/- 1 V

4.4 MCC 134 functions and data

4.4.1 Functions

Function Description
mcc134_open() Open an MCC 134 for use.
mcc134_is_open() Check if an MCC 134 is open.
mcc134_close() Close an MCC 134.
mcc134_info() Return information about this device type.
mcc134_serial() Read the serial number.
mcc134_calibration_date() Read the calibration date.
mcc134_calibration_coefficient_read() Read the calibration coefficients for a channel.
mcc134_calibration_coefficient_write() Write the calibration coefficients for a channel.
mcc134_tc_type_write() Write the thermocouple type for a channel.
mcc134_tc_type_read() Read the thermocouple type for a channel.
mcc134_update_interval_write() Write the temperature update interval.
mcc134_update_interval_read() Read the temperature update interval.
mcc134_t_in_read() Read a temperature input value.
mcc134_a_in_read() Read an analog input value.
mcc134_cjc_read() Read a CJC temperature.

int mcc134_open(uint8_t address)
Open a connection to the MCC 134 device at the specified address.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7).

int mcc134_is_open(uint8_t address)
Check if an MCC 134 is open.

Return 1 if open, 0 if not open.

68 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

Parameters

• address: The board address (0 - 7).

int mcc134_close(uint8_t address)
Close a connection to an MCC 134 device and free allocated resources.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7).

struct MCC134DeviceInfo* mcc134_info(void)
Return constant device information for all MCC 134s.

Return Pointer to struct MCC134DeviceInfo.

int mcc134_serial(uint8_t address, char * buffer)
Read the MCC 134 serial number.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• buffer: Pass a user-allocated buffer pointer to receive the serial number as a string. The buffer must
be at least 9 characters in length.

int mcc134_calibration_date(uint8_t address, char * buffer)
Read the MCC 134 calibration date.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• buffer: Pass a user-allocated buffer pointer to receive the date as a string (format “YYYY-MM-
DD”). The buffer must be at least 11 characters in length.

int mcc134_calibration_coefficient_read(uint8_t address, uint8_t channel, double * slope, dou-
ble * offset)

Read the MCC 134 calibration coefficients for a single channel.

The coefficients are applied in the library as:

calibrated_ADC_code = (raw_ADC_code * slope) + offset

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The channel number (0 - 3).

• slope: Receives the slope.

• offset: Receives the offset.

4.4. MCC 134 functions and data 69



MCC DAQ HAT Library Documentation, Release 1.4.0

int mcc134_calibration_coefficient_write(uint8_t address, uint8_t channel, double slope, dou-
ble offset)

Temporarily write the MCC 134 calibration coefficients for a single channel.

The user can apply their own calibration coefficients by writing to these values. The values will reset to the
factory values from the EEPROM whenever mcc134_open() is called.

The coefficients are applied in the library as:

calibrated_ADC_code = (raw_ADC_code * slope) + offset

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The channel number (0 - 3).

• slope: The new slope value.

• offset: The new offset value.

int mcc134_tc_type_write(uint8_t address, uint8_t channel, uint8_t type)
Write the thermocouple type for a channel.

Tells the MCC 134 library what thermocouple type is connected to the specified channel and enables the channel.
This is required for correct temperature calculations. The type is one of TcTypes and the board will default to
all disabled (set to TC_DISABLED) when it is first opened.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The analog input channel number (0 - 3).

• type: The thermocouple type, one of TcTypes.

int mcc134_tc_type_read(uint8_t address, uint8_t channel, uint8_t * type)
Read the thermocouple type for a channel.

Reads the current thermocouple type for the specified channel. The type is one of TcTypes and the board will
default to all channels disabled (set to TC_DISABLED) when it is first opened.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The analog input channel number (0 - 3).

• type: Receives the thermocouple type, one of TcTypes.

int mcc134_update_interval_write(uint8_t address, uint8_t interval)
Write the temperature update interval.

Tells the MCC 134 library how often to update temperatures, with the interval specified in seconds. The
library defaults to updating every second, but you may increase this interval if you do not plan to call
mcc134_t_in_read() very often. This will reduce the load on shared resources for other DAQ HATs.

70 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• interval: The interval in seconds (1 - 255).

int mcc134_update_interval_read(uint8_t address, uint8_t * interval)
Read the temperature update interval.

Reads the library temperature update rate in seconds.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• interval: Receives the update rate.

int mcc134_t_in_read(uint8_t address, uint8_t channel, double * value)
Read a temperature input channel.

Reads the specified channel and returns the value as degrees Celsius. The channel must be enabled with
mcc134_tc_type_write() or the function will return RESULT_BAD_PARAMETER.

This function returns immediately with the most recent internal temperature reading for the specified channel.
When a board is open, the library will read each channel once per second. This interval can be increased with
mcc134_update_interval_write(). There will be a delay when the board is first opened because the read thread
has to read the cold junction compensation sensors and thermocouple inputs before it can return the first value.

The returned temperature can have some special values to indicate abnormal conditions:

• OPEN_TC_VALUE if an open thermocouple is detected on the channel.

• OVERRANGE_TC_VALUE if an overrange is detected on the channel.

• COMMON_MODE_TC_VALUE if a common-mode error is detected on the channel. This occurs when
thermocouples attached to the board are at different voltages.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The analog input channel number (0 - 3.)

• value: Receives the temperature value in degrees C.

int mcc134_a_in_read(uint8_t address, uint8_t channel, uint32_t options, double * value)
Read an analog input channel and return the value.

This function returns immediately with the most recent voltage or ADC code reading for the specified
channel. The channel must be enabled with mcc134_tc_type_write() or the function will return RE-
SULT_BAD_PARAMETER.

The library reads the ADC at the time interval set with mcc134_update_interval_write(), which defaults to 1
second. This interval may be increased with mcc134_update_interval_write().

The returned voltage can have a special value to indicate abnormal conditions:

4.4. MCC 134 functions and data 71



MCC DAQ HAT Library Documentation, Release 1.4.0

• COMMON_MODE_TC_VALUE if a common-mode error is detected on the channel. This occurs when
thermocouples attached to the board are at different voltages.

The valid options are:

• OPTS_NOSCALEDATA: Return ADC code (a value between -8,388,608 and 8,388,607) rather than volt-
age.

• OPTS_NOCALIBRATEDATA: Return data without the calibration factors applied.

The options parameter is set to 0 or OPTS_DEFAULT for default operation, which is scaled and calibrated data.

Multiple options may be specified by ORing the flags. For instance, specifying OPTS_NOSCALEDATA |
OPTS_NOCALIBRATEDATA will return the value read from the ADC without calibration or converting to volt-
age.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The analog input channel number (0 - 3).

• options: Options bitmask.

• value: Receives the analog input value.

int mcc134_cjc_read(uint8_t address, uint8_t channel, double * value)
Read the cold junction compensation temperature for a specified channel.

Returns the most recent cold junction sensor temperature for the specified thermocouple terminal. The library
automatically performs cold junction compensation, so this function is only needed for informational use or if
you want to perform your own compensation. The temperature is returned in degress C.

The library reads the cold junction compensation sensors at the time interval set with
mcc134_update_interval_write(), which defaults to 1 second. This interval may be increased with
mcc134_update_interval_write().

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The analog input channel number, 0 - 3.

• value: Receives the read value.

4.4.2 Data definitions

OPEN_TC_VALUE (-9999.0)
Return value for an open thermocouple.

OVERRANGE_TC_VALUE (-8888.0)
Return value for thermocouple voltage outside the valid range.

COMMON_MODE_TC_VALUE (-7777.0)
Return value for thermocouple voltage outside the common-mode range.

72 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

4.4.2.1 Device Info

struct MCC134DeviceInfo
MCC 134 constant device information.

Public Members

const uint8_t NUM_AI_CHANNELS
The number of analog input channels (4.)

const int32_t AI_MIN_CODE
The minimum ADC code (-8,388,608.)

const int32_t AI_MAX_CODE
The maximum ADC code (8,388,607.)

const double AI_MIN_VOLTAGE
The input voltage corresponding to the minimum code (-0.078125V.)

const double AI_MAX_VOLTAGE
The input voltage corresponding to the maximum code (+0.078125V - 1 LSB.)

const double AI_MIN_RANGE
The minimum voltage of the input range (-0.078125V.)

const double AI_MAX_RANGE
The maximum voltage of the input range (0.078125V.)

4.4.2.2 Thermocouple Types

enum TcTypes
Thermocouple type constants.

Values:

TC_TYPE_J = 0
J type.

TC_TYPE_K = 1
K type.

TC_TYPE_T = 2
T type.

TC_TYPE_E = 3
E type.

TC_TYPE_R = 4
R type.

TC_TYPE_S = 5
S type.

TC_TYPE_B = 6
B type.

TC_TYPE_N = 7
N type.

4.4. MCC 134 functions and data 73



MCC DAQ HAT Library Documentation, Release 1.4.0

TC_DISABLED = 0xFF
Input disabled.

4.5 MCC 152 functions and data

4.5.1 Functions

Function Description
mcc152_open() Open an MCC 152 for use.
mcc152_is_open() Check if an MCC 152 is open.
mcc152_close() Close an MCC 152.
mcc152_info() Return information about this device type.
mcc152_serial() Read the serial number.
mcc152_a_out_write() Write an analog output channel value.
mcc152_a_out_write_all() Write all analog output channels simultaneously.
mcc152_dio_reset() Reset the digital I/O to the default configuration.
mcc152_dio_input_read_bit() Read a digital input.
mcc152_dio_input_read_port() Read all digital inputs.
mcc152_dio_output_write_bit() Write a digital output.
mcc152_dio_output_write_port() Write all digital outputs.
mcc152_dio_output_read_bit() Read the state of a digital output.
mcc152_dio_output_read_port() Read the state of all digital outputs.
mcc152_dio_int_status_read_bit() Read the interrupt status for a single channel.
mcc152_dio_int_status_read_port() Read the interrupt status for all channels.
mcc152_dio_config_write_bit() Write a digital I/O configuration item value for a single chan-

nel.
mcc152_dio_config_write_port() Write a digital I/O configuration item value for all channels.
mcc152_dio_config_read_bit() Read a digital I/O configuration item value for a single channel.
mcc152_dio_config_read_port() Read a digital I/O configuration item value for all channels.

int mcc152_open(uint8_t address)
Open a connection to the MCC 152 device at the specified address.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7).

int mcc152_is_open(uint8_t address)
Check if an MCC 152 is open.

Return 1 if open, 0 if not open.

Parameters

• address: The board address (0 - 7).

int mcc152_close(uint8_t address)
Close a connection to an MCC 152 device and free allocated resources.

Return Result code, RESULT_SUCCESS if successful.

74 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

Parameters

• address: The board address (0 - 7).

struct MCC152DeviceInfo* mcc152_info(void)
Return constant device information for all MCC 152s.

Return Pointer to struct MCC152DeviceInfo.

int mcc152_serial(uint8_t address, char * buffer)
Read the MCC 152 serial number.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• buffer: Pass a user-allocated buffer pointer to receive the serial number as a string. The buffer must
be at least 9 characters in length.

int mcc152_a_out_write(uint8_t address, uint8_t channel, uint32_t options, double value)
Perform a write to an analog output channel.

Updates the analog output channel in either volts or DAC code (set the OPTS_NOSCALEDATA option to use
DAC code.) The voltage must be 0.0 - 5.0 and DAC code 0.0 - 4095.0.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The analog output channel number, 0 - 1.

• options: Options bitmask

• value: The analog output value.

int mcc152_a_out_write_all(uint8_t address, uint32_t options, double * values)
Perform a write to all analog output channels simultaneously.

Update all analog output channels in either volts or DAC code (set the OPTS_NOSCALEDATA option to use
DAC code.) The outputs will update at the same time.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• options: Options bitmask

• values: The array of analog output values; there must be at least 2 values, but only the first two
values will be used.

int mcc152_dio_reset(uint8_t address)
Reset the digital I/O to the default configuration.

• All channels input

• Output registers set to 1

4.5. MCC 152 functions and data 75



MCC DAQ HAT Library Documentation, Release 1.4.0

• Input inversion disabled

• No input latching

• Pull-up resistors enabled

• All interrupts disabled

• Push-pull output type

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

int mcc152_dio_input_read_bit(uint8_t address, uint8_t channel, uint8_t * value)
Read a single digital input channel.

Returns 0 or 1 in value. If the specified channel is configured as an output this will return the value present at
the terminal.

This function reads the entire input register, so care must be taken when latched inputs are enabled. If a latched
input changes between input reads then changes back to its original value, the next input read will report the
change to the first value then the following read will show the original value. If another input is read then this
input change could be missed so it is best to use mcc152_dio_input_read_port() when using latched inputs.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The DIO channel number, 0 - 7.

• value: Receives the input value.

int mcc152_dio_input_read_port(uint8_t address, uint8_t * value)
Read all digital input channels simultaneously.

Returns an 8-bit value in value representing all channels in channel order (bit 0 is channel 0, etc.) If a channel
is configured as an output this will return the value present at the terminal.

Care must be taken when latched inputs are enabled. If a latched input changes between input reads then changes
back to its original value, the next input read will report the change to the first value then the following read will
show the original value.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• value: Receives the input values.

int mcc152_dio_output_write_bit(uint8_t address, uint8_t channel, uint8_t value)
Write a single digital output channel.

If the specified channel is configured as an input this will not have any effect at the terminal, but allows the
output register to be loaded before configuring the channel as an output.

Return Result code, RESULT_SUCCESS if successful.

76 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The DIO channel number, 0 - 7.

• value: The output value (0 or 1)

int mcc152_dio_output_write_port(uint8_t address, uint8_t value)
Write all digital output channels simultaneously.

Pass an 8-bit value in value representing the desired output for all channels in channel order (bit 0 is channel 0,
etc.)

If the specified channel is configured as an input this will not have any effect at the terminal, but allows the
output register to be loaded before configuring the channel as an output.

For example, to set channels 0 - 3 to 0 and channels 4 - 7 to 1 call:

mcc152_dio_output_write(address, 0xF0);

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• value: The output values.

int mcc152_dio_output_read_bit(uint8_t address, uint8_t channel, uint8_t * value)
Read a single digital output register.

Returns 0 or 1 in value.

This function returns the value stored in the output register. It may not represent the value at the terminal if the
channel is configured as input or open-drain output.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The DIO channel number, 0 - 7.

• value: Receives the output value.

int mcc152_dio_output_read_port(uint8_t address, uint8_t * value)
Read all digital output registers simultaneously.

Returns an 8-bit value in value representing all channels in channel order (bit 0 is channel 0, etc.)

This function returns the value stored in the output register. It may not represent the value at the terminal if the
channel is configured as input or open-drain output.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• value: Receives the output values.

4.5. MCC 152 functions and data 77



MCC DAQ HAT Library Documentation, Release 1.4.0

int mcc152_dio_int_status_read_bit(uint8_t address, uint8_t channel, uint8_t * value)
Read the interrupt status for a single channel.

Returns 0 when the channel is not generating an interrupt, 1 when the channel is generating an interrupt.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The DIO channel number, 0 - 7.

• value: Receives the interrupt status value.

int mcc152_dio_int_status_read_port(uint8_t address, uint8_t * value)
Read the interrupt status for all channels.

Returns an 8-bit value in value representing all channels in channel order (bit 0 is channel 0, etc.) A 0 in a
bit indicates the corresponding channel is not generating an interrupt, a 1 indicates the channel is generating an
interrupt.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• value: Receives the interrupt status value.

int mcc152_dio_config_write_bit(uint8_t address, uint8_t channel, uint8_t item, uint8_t value)
Write a digital I/O configuration value for a single channel.

There are several configuration items that may be written for the digital I/O. The item is selected with the item
argument, which may be one of the DIOConfigItem values:

• DIO_DIRECTION: Set the digital I/O channel direction by passing 0 for output and 1 for input.

• DIO_PULL_CONFIG: Configure the pull-up/down resistor by passing 0 for pull-down or 1 for pull-up.
The resistor may be enabled or disabled with the DIO_PULL_ENABLE item.

• DIO_PULL_ENABLE: Enable or disable the pull-up/down resistor by passing 0 for disabled or 1 for en-
abled. The resistor is configured for pull-up/down with the DIO_PULL_CONFIG item. The resistor is
automatically disabled if the bit is set to output and is configured as open-drain.

• DIO_INPUT_INVERT: Enable inverting the input by passing a 0 for normal input or 1 for inverted.

• DIO_INPUT_LATCH: Enable input latching by passing 0 for non-latched or 1 for latched.

When the input is non-latched, reads show the current status of the input. A state change in the input
generates an interrupt (if it is not masked). A read of the input clears the interrupt. If the input goes back
to its initial logic state before the input is read, then the interrupt is cleared.

When the input is latched, a change of state of the input generates an interrupt and the input logic value
is loaded into the input port register. A read of the input will clear the interrupt. If the input returns to its
initial logic state before the input is read, then the interrupt is not cleared and the input register keeps the
logic value that initiated the interrupt. The next read of the input will show the initial state. Care must be
taken when using bit reads on the input when latching is enabled - the bit function still reads the entire
input register so a change on another bit could be missed. It is best to use port input reads when using
latching.

78 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

If the input is changed from latched to non-latched, a read from the input reflects the current terminal logic
level. If the input is changed from non-latched to latched input, the read from the input represents the
latched logic level.

• DIO_OUTPUT_TYPE: Set the output type by writing 0 for push-pull or 1 for open-drain. This setting
affects all outputs so is not a per-channel setting and the channel argument will be ignored. It should
be set to the desired type before using the DIO_DIRECTION item to set channels as outputs. Internal
pull-up/down resistors are disabled when a bit is set to output and is configured as open-drain, so external
resistors should be used.

• DIO_INT_MASK: Enable or disable interrupt generation for the input by masking the interrupt. Write 0 to
enable the interrupt or 1 to disable it.

All MCC 152s share a single interrupt signal to the CPU, so when an interrupt occurs the user must de-
termine the source, optionally act on the interrupt, then clear that source so that other interrupts may be
detected. The current interrupt state may be read with hat_interrupt_state(). A user program may wait for
the interrupt to become active with hat_wait_for_interrupt(), or may register an interrrupt callback function
with hat_interrupt_callback_enable(). This allows the user to wait for a change on one or more inputs with-
out constantly reading the inputs. The source of the interrupt may be determined by reading the interrupt
status of each MCC 152 with mcc152_dio_int_status_read_bit() or mcc152_dio_int_status_read_port(),
and all active interrupt sources must be cleared before the interrupt will become inactive. The interrupt is
cleared by reading the input(s) with mcc152_dio_input_read_bit() or mcc152_dio_input_read_port().

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The digital I/O channel, 0 - 7.

• item: The config item, one of DIOConfigItem.

• value: The config value.

int mcc152_dio_config_write_port(uint8_t address, uint8_t item, uint8_t value)
Write a digital I/O configuration value for all channels.

There are several configuration items that may be written for the digital I/O. They are written for all channels at
once using the 8-bit value passed in value, where each bit corresponds to a channel (bit 0 is channel 0, etc.) The
item is selected with the item argument, which may be one of the DIOConfigItem values:

• DIO_DIRECTION: Set the digital I/O channel directions by passing 0 in a bit for output and 1 for input.

• DIO_PULL_CONFIG: Configure the pull-up/down resistors by passing 0 in a bit for pull-down or 1 for
pull-up. The resistors may be enabled or disabled with the DIO_PULL_ENABLE item.

• DIO_PULL_ENABLE: Enable or disable pull-up/down resistors by passing 0 in a bit for disabled or 1 for
enabled. The resistors are configured for pull-up/down with the DIO_PULL_CONFIG item. The resistors
are automatically disabled if a bit is set to output and is configured as open-drain.

• DIO_INPUT_INVERT: Enable inverting inputs by passing a 0 in a bit for normal input or 1 for inverted.

• DIO_INPUT_LATCH: Enable input latching by passing 0 in a bit for non-latched or 1 for latched.

When the input is non-latched, reads show the current status of the input. A state change in the corre-
sponding input generates an interrupt (if it is not masked). A read of the input clears the interrupt. If the
input goes back to its initial logic state before the input is read, then the interrupt is cleared.

When the input is latched, a change of state of the input generates an interrupt and the input logic value
is loaded into the input port register. A read of the input will clear the interrupt. If the input returns to its
initial logic state before the input is read, then the interrupt is not cleared and the input register keeps the

4.5. MCC 152 functions and data 79



MCC DAQ HAT Library Documentation, Release 1.4.0

logic value that initiated the interrupt. The next read of the input will show the initial state. Care must be
taken when using bit reads on the input when latching is enabled - the bit function still reads the entire
input register so a change on another bit could be missed. It is best to use port input reads when using
latching.

If the input is changed from latched to non-latched, a read from the input reflects the current terminal logic
level. If the input is changed from non-latched to latched input, the read from the input represents the
latched logic level.

• DIO_OUTPUT_TYPE: Set the output type by writing 0 for push-pull or 1 for open-drain. This set-
ting affects all outputs so is not a per-channel setting. It should be set to the desired type before using
DIO_DIRECTION to set channels as outputs. Internal pull-up/down resistors are disabled when a bit is set
to output and is configured as open-drain, so external resistors should be used.

• DIO_INT_MASK: Enable or disable interrupt generation for specific inputs by masking the interrupts.
Write 0 in a bit to enable the interrupt from that channel or 1 to disable it.

All MCC 152s share a single interrupt signal to the CPU, so when an interrupt occurs the user must de-
termine the source, optionally act on the interrupt, then clear that source so that other interrupts may be
detected. The current interrupt state may be read with hat_interrupt_state(). A user program may wait for
the interrupt to become active with hat_wait_for_interrupt(), or may register an interrrupt callback function
with hat_interrupt_callback_enable(). This allows the user to wait for a change on one or more inputs with-
out constantly reading the inputs. The source of the interrupt may be determined by reading the interrupt
status of each MCC 152 with mcc152_dio_int_status_read_bit() or mcc152_dio_int_status_read_port(),
and all active interrupt sources must be cleared before the interrupt will become inactive. The interrupt is
cleared by reading the input(s) with mcc152_dio_input_read_bit() or mcc152_dio_input_read_port().

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• item: The config item, one of DIOConfigItem.

• value: The config value.

int mcc152_dio_config_read_bit(uint8_t address, uint8_t channel, uint8_t item, uint8_t * value)
Read a digital I/O configuration value for a single channel.

There are several configuration items that may be read for the digital I/O. The item is selected with the item
argument, which may be one of the DIOConfigItem values:

• DIO_DIRECTION: Read the digital I/O channel direction setting, where 0 is output and 1 is input.

• DIO_PULL_CONFIG: Read the pull-up/down resistor configuration where 0 is pull-down and 1 is pull-up.

• DIO_PULL_ENABLE: Read the pull-up/down resistor enable setting where 0 is disabled and 1 is enabled.

• DIO_INPUT_INVERT: Read the input invert setting where 0 is normal input and 1 is inverted.

• DIO_INPUT_LATCH: Read the input latching setting where 0 is non-latched and 1 is latched.

• DIO_OUTPUT_TYPE: Read the output type setting where 0 is push-pull and 1 is open-drain. This setting
affects all outputs so is not a per-channel setting and the channel argument is ignored.

• DIO_INT_MASK: Read the interrupt mask setting where 0 enables the interrupt and 1 disables it.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

80 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

• channel: The digital I/O channel, 0 - 7.

• item: The config item, one of DIOConfigItem.

• value: Receives the config value.

int mcc152_dio_config_read_port(uint8_t address, uint8_t item, uint8_t * value)
Read a digital I/O configuration value for all channels.

There are several configuration items that may be read for the digital I/O. They are read for all channels at once,
returning an 8-bit value in value, where each bit corresponds to a channel (bit 0 is channel 0, etc.) The item is
selected with the item argument, which may be one of the DIOConfigItem values:

• DIO_DIRECTION: Read the digital I/O channels direction settings, where 0 for a bit is output and 1 is
input.

• DIO_PULL_CONFIG: Read the pull-up/down resistor configurations where 0 for a bit is pull-down and 1
is pull-up.

• DIO_PULL_ENABLE: Read the pull-up/down resistor enable settings where 0 for a bit is disabled and 1
is enabled.

• DIO_INPUT_INVERT: Read the input invert settings where 0 for a bit is normal input and 1 is inverted.

• DIO_INPUT_LATCH: Read the input latching settings where 0 for a bit is non-latched and 1 is latched.

• DIO_OUTPUT_TYPE: Read the output type setting where 0 is push-pull and 1 is open-drain. This setting
affects all outputs so is not a per-channel setting.

• DIO_INT_MASK: Read the interrupt mask settings where 0 enables the interrupt from the corresponding
channel and 1 disables it.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• item: The config item, one of DIOConfigItem.

• value: Receives the config value.

4.5.2 Data types and definitions

4.5.2.1 Device Info

struct MCC152DeviceInfo
MCC 152 constant device information.

Public Members

const uint8_t NUM_DIO_CHANNELS
The number of digital I/O channels (8.)

const uint8_t NUM_AO_CHANNELS
The number of analog output channels (2.)

const uint16_t AO_MIN_CODE
The minimum DAC code (0.)

4.5. MCC 152 functions and data 81



MCC DAQ HAT Library Documentation, Release 1.4.0

const uint16_t AO_MAX_CODE
The maximum DAC code (4095.)

const double AO_MIN_VOLTAGE
The output voltage corresponding to the minimum code (0.0V.)

const double AO_MAX_VOLTAGE
The output voltage corresponding to the maximum code (+5.0V - 1 LSB.)

const double AO_MIN_RANGE
The minimum voltage of the output range (0.0V.)

const double AO_MAX_RANGE
The maximum voltage of the output range (+5.0V.)

4.5.2.2 DIO Config Items

enum DIOConfigItem
DIO Configuration Items.

Values:

DIO_DIRECTION = 0
Configure channel direction.

DIO_PULL_CONFIG = 1
Configure pull-up/down resistor.

DIO_PULL_ENABLE = 2
Enable pull-up/down resistor.

DIO_INPUT_INVERT = 3
Configure input inversion.

DIO_INPUT_LATCH = 4
Configure input latching.

DIO_OUTPUT_TYPE = 5
Configure output type.

DIO_INT_MASK = 6
Configure interrupt mask.

82 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

4.6 MCC 172 functions and data

4.6.1 Functions

Function Description
mcc172_open() Open an MCC 172 for use.
mcc172_is_open() Check if an MCC 172 is open.
mcc172_close() Close an MCC 172.
mcc172_info() Return information about this device type.
mcc172_blink_led() Blink the MCC 172 LED.
mcc172_firmware_version() Get the firmware version.
mcc172_serial() Read the serial number.
mcc172_calibration_date() Read the calibration date.
mcc172_calibration_coefficient_read() Read the calibration coefficients for a channel.
mcc172_calibration_coefficient_write() Write the calibration coefficients for a channel.
mcc172_iepe_config_read() Read the IEPE configuration for a channel.
mcc172_iepe_config_write() Write the IEPE configuration for a channel.
mcc172_a_in_sensitivity_read() Read the sensitivity scaling for a channel.
mcc172_a_in_sensitivity_write() Write the sensitivity scaling for a channel.
mcc172_a_in_clock_config_read() Read the sampling clock configuration.
mcc172_a_in_clock_config_write() Write the sampling clock configuration.
mcc172_trigger_config() Configure the external trigger input.
mcc172_a_in_scan_start() Start a hardware-paced analog input scan.
mcc172_a_in_scan_buffer_size() Read the size of the internal scan data buffer.
mcc172_a_in_scan_status() Read the scan status.
mcc172_a_in_scan_read() Read scan data and status.
mcc172_a_in_scan_channel_count() Get the number of channels in the current scan.
mcc172_a_in_scan_stop() Stop the scan.
mcc172_a_in_scan_cleanup() Free scan resources.

int mcc172_open(uint8_t address)
Open a connection to the MCC 172 device at the specified address.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7).

int mcc172_close(uint8_t address)
Close a connection to an MCC 172 device and free allocated resources.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7).

int mcc172_is_open(uint8_t address)
Check if an MCC 172 is open.

Return 1 if open, 0 if not open.

Parameters

4.6. MCC 172 functions and data 83



MCC DAQ HAT Library Documentation, Release 1.4.0

• address: The board address (0 - 7).

struct MCC172DeviceInfo* mcc172_info(void)
Return constant device information for all MCC 172s.

Return Pointer to struct MCC172DeviceInfo.

int mcc172_blink_led(uint8_t address, uint8_t count)
Blink the LED on the MCC 172.

Passing 0 for count will result in the LED blinking continuously until the board is reset or mcc172_blink_led()
is called again with a non-zero value for count.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7).

• count: The number of times to blink (0 - 255).

int mcc172_firmware_version(uint8_t address, uint16_t * version)
Return the board firmware version.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• version: Receives the firmware version. The version will be in BCD hexadecimal with the high
byte as the major version and low byte as minor, i.e. 0x0103 is version 1.03.

int mcc172_serial(uint8_t address, char * buffer)
Read the MCC 172 serial number.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• buffer: Pass a user-allocated buffer pointer to receive the serial number as a string. The buffer must
be at least 9 characters in length.

int mcc172_calibration_date(uint8_t address, char * buffer)
Read the MCC 172 calibration date.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• buffer: Pass a user-allocated buffer pointer to receive the date as a string (format “YYYY-MM-
DD”). The buffer must be at least 11 characters in length.

84 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

int mcc172_calibration_coefficient_read(uint8_t address, uint8_t channel, double * slope, dou-
ble * offset)

Read the MCC 172 calibration coefficients for a single channel.

The coefficients are applied in the library as:

calibrated_ADC_code = (raw_ADC_code - offset) * slope

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The channel number (0 - 1).

• slope: Receives the slope.

• offset: Receives the offset.

int mcc172_calibration_coefficient_write(uint8_t address, uint8_t channel, double slope, dou-
ble offset)

Temporarily write the MCC 172 calibration coefficients for a single channel.

The user can apply their own calibration coefficients by writing to these values. The values will reset to the
factory values from the EEPROM whenever mcc172_open() is called. This function will fail and return RE-
SULT_BUSY if a scan is active when it is called.

The coefficients are applied in the library as:

calibrated_ADC_code = (raw_ADC_code - offset) * slope

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The channel number (0 - 1).

• slope: The new slope value.

• offset: The new offset value.

int mcc172_iepe_config_read(uint8_t address, uint8_t channel, uint8_t * config)
Read the MCC 172 IEPE configuration for a single channel.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The channel number (0 - 1).

• config: Receives the configuration for the specified channel:

– 0: IEPE power off

– 1: IEPE power on

4.6. MCC 172 functions and data 85



MCC DAQ HAT Library Documentation, Release 1.4.0

int mcc172_iepe_config_write(uint8_t address, uint8_t channel, uint8_t config)
Write the MCC 172 IEPE configuration for a single channel.

Writes the new IEPE configuration for a channel. This function will fail and return RESULT_BUSY if a scan is
active when it is called.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The channel number (0 - 1).

• config: The IEPE configuration for the specified channel:

– 0: IEPE power off

– 1: IEPE power on

int mcc172_a_in_sensitivity_read(uint8_t address, uint8_t channel, double * value)
Read the MCC 172 analog input sensitivity scaling factor for a single channel.

The sensitivity is specified in mV / mechanical unit. The default value when opening the library is 1000,
resulting in no scaling of the input voltage.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The channel number (0 - 1).

• value: Receives the sensitivity for the specified channel

int mcc172_a_in_sensitivity_write(uint8_t address, uint8_t channel, double value)
Write the MCC 172 analog input sensitivity scaling factor for a single channel.

This applies a scaling factor to the analog input data so it returns values that are meaningful for the connected
sensor.

The sensitivity is specified in mV / mechanical unit. The default value when opening the library is 1000, resulting
in no scaling of the input voltage. Changing this value will not change the values reported by mcc172_info()
since it is simply sensor scaling applied to the data before returning it.

Examples:

• A seismic sensor with a sensitivity of 10 V/g. Set the sensitivity to 10,000 and the returned data will be in
units of g.

• A vibration sensor with a sensitivity of 100 mV/g. Set the sensitivity to 100 and the returned data will be
in units of g.

This function will fail and return RESULT_BUSY if a scan is active when it is called.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel: The channel number (0 - 1).

86 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

• value: The sensitivity for the specified channel.

int mcc172_a_in_clock_config_read(uint8_t address, uint8_t * clock_source, double * sam-
ple_rate_per_channel, uint8_t * synced)

Read the sampling clock configuration.

This function will return the sample clock configuration and rate. If the clock is configured for local or master
source, then the rate will be the internally adjusted rate set by the user. If the clock is configured for slave
source, then the rate will be measured from the master clock after the synchronization period has ended. The
synchronization status is also returned.

The clock source will be one of the following values:

• SOURCE_LOCAL: The clock is generated on this MCC 172 and not shared with other MCC 172s.

• SOURCE_MASTER: The clock is generated on this MCC 172 and is shared as the master clock for other
MCC 172s.

• SOURCE_SLAVE: No clock is generated on this MCC 172, it receives its clock from the master MCC 172.

The data rate will not be valid in slave mode if synced is equal to 0. The device will not detect a loss of the
master clock when in slave mode; it only monitors the clock when a sync is initiated.

Return Result code, RESULT_SUCCESS if successful

Parameters

• address: The board address (0 - 7). Board must already be opened.

• clock_source: Receives the ADC clock source, one of the source type values.

• sample_rate_per_channel: Receives the sample rate in samples per second per channel

• synced: Receives the syncronization status (0: sync in progress, 1: sync complete)

int mcc172_a_in_clock_config_write(uint8_t address, uint8_t clock_source, double sam-
ple_rate_per_channel)

Write the sampling clock configuration.

This function will configure the ADC sampling clock. The default configuration after opening the device is local
mode, 51.2 KHz data rate.

The clock_source must be one of:

• SOURCE_LOCAL: The clock is generated on this MCC 172 and not shared with other MCC 172s.

• SOURCE_MASTER: The clock is generated on this MCC 172 and is shared as the master clock for other
MCC 172s. All other MCC 172s must be configured for local or slave clock.

• SOURCE_SLAVE: No clock is generated on this MCC 172, it receives its clock from the master MCC 172.

The ADCs will be synchronized so they sample the inputs at the same time. This requires 128 clock cycles
before the first sample is available. When using a master - slave clock configuration for multiple MCC 172s
there are additional considerations:

• There should be only one master device; otherwise, you will be connecting multiple outputs together and
could damage a device.

• Configure the clock on the slave device(s) first, master last. The synchronization will occur when the
master clock is configured, causing the ADCs on all the devices to be in sync.

4.6. MCC 172 functions and data 87



MCC DAQ HAT Library Documentation, Release 1.4.0

• If you change the clock configuration on one device after configuring the master, then the data will no
longer be in sync. The devices cannot detect this and will still report that they are synchronized. Always
write the clock configuration to all devices when modifying the configuration.

• Slave devices must have a master clock source or scans will never complete.

• A trigger must be used for the data streams from all devices to start on the same sample.

The MCC 172 can generate an ADC sampling clock equal to 51.2 kHz divided by an integer between 1 and
256. The data_rate_per_channel will be internally converted to the nearest valid rate. The actual rate can be
read back using mcc172_a_in_clock_config_read(). When used in slave clock configuration, the device will
measure the frequency of the incoming master clock after the synchronization period is complete. Calling
mcc172_a_in_clock_config_read() after this will return the measured data rate.

Return Result code, RESULT_SUCCESS if successful

Parameters

• address: The board address (0 - 7). Board must already be opened.

• clock_source: The ADC clock source, one of the source type values.

• sample_rate_per_channel: The requested sample rate in samples per second per channel

int mcc172_trigger_config(uint8_t address, uint8_t source, uint8_t mode)
Configure the digital trigger.

The analog input scan may be configured to start saving the acquired data when the digital trigger is in the
desired state. A single device trigger may also be shared with multiple boards. This command sets the trigger
source and mode.

The trigger source must be one of:

• SOURCE_LOCAL: The trigger terminal on this MCC 172 is used and not shared with other MCC 172s.

• SOURCE_MASTER: The trigger terminal on this MCC 172 is used and is shared as the master trigger for
other MCC 172s.

• SOURCE_SLAVE: The trigger terminal on this MCC 172 is not used, it receives its trigger from the master
MCC 172.

The trigger mode must be one of:

• TRIG_RISING_EDGE: Start the scan on a rising edge of TRIG.

• TRIG_FALLING_EDGE: Start the scan on a falling edge of TRIG.

• TRIG_ACTIVE_HIGH: Start the scan any time TRIG is high.

• TRIG_ACTIVE_LOW: Start the scan any time TRIG is low.

Due to the nature of the filtering in the A/D converters there is an input delay of 39 samples, so the data coming
from the converters at any time is delayed by 39 samples from the current time. This is most noticeable when
using a trigger - there will be approximately 39 samples prior to the trigger event in the captured data.

Care must be taken when using master / slave triggering; the input trigger signal on the master will be passed
through to the slave(s), but the mode is set independently on each device. For example, it is possible for the
master to trigger on the rising edge of the signal and the slave to trigger on the falling edge.

Return Result code, RESULT_SUCCESS if successful.

88 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

Parameters

• address: The board address (0 - 7). Board must already be opened.

• source: The trigger source, one of the source type values.

• mode: The trigger mode, one of the trigger mode values.

int mcc172_a_in_scan_start(uint8_t address, uint8_t channel_mask, uint32_t samples_per_channel,
uint32_t options)

Start capturing analog input data from the specified channels.

The scan runs as a separate thread from the user’s code. The function will allocate a scan buffer and read
data from the device into that buffer. The user reads the data from this buffer and the scan status using the
mcc172_a_in_scan_read() function. mcc172_a_in_scan_stop() is used to stop a continuous scan, or to stop a
finite scan before it completes. The user must call mcc172_a_in_scan_cleanup() after the scan has finished and
all desired data has been read; this frees all resources from the scan and allows additional scans to be performed.

The scan cannot be started until the ADCs are synchronized, so this function will not return until that has
completed. It is best to wait for sync using mcc172_a_in_clock_config_read() before starting the scan.

The scan state has defined terminology:

• Active: mcc172_a_in_scan_start() has been called and the device may be acquiring data or finished with
the acquisition. The scan has not been cleaned up by calling mcc172_a_in_scan_cleanup(), so another
scan may not be started.

• Running: The scan is active and the device is still acquiring data. Certain functions will return an error
because the device is busy.

The valid options are:

• OPTS_NOSCALEDATA: Returns ADC code (a value between AI_MIN_CODE and AI_MAX_CODE)
rather than voltage.

• OPTS_NOCALIBRATEDATA: Return data without the calibration factors applied.

• OPTS_EXTTRIGGER: Hold off the scan (after calling mcc172_a_in_scan_start()) until the trigger condi-
tion is met.

• OPTS_CONTINUOUS: Scans continuously until stopped by the user by calling mcc172_a_in_scan_stop()
and writes data to a circular buffer. The data must be read before being overwritten to avoid a buffer
overrun error. samples_per_channel is only used for buffer sizing.

The OPTS_EXTCLOCK option is not supported for this device and will return an error.

The options parameter is set to 0 or OPTS_DEFAULT for default operation, which is scaled and calibrated data,
no trigger, and finite operation.

Multiple options may be specified by ORing the flags. For instance, specifying OPTS_NOSCALEDATA |
OPTS_NOCALIBRATEDATA will return the values read from the ADC without calibration or converting to
voltage.

The buffer size will be allocated as follows:

Finite mode: Total number of samples in the scan

Continuous mode (buffer size is per channel): Either samples_per_channel or the value in the following table,
whichever is greater

4.6. MCC 172 functions and data 89



MCC DAQ HAT Library Documentation, Release 1.4.0

Sample Rate Buffer Size (per channel)
200-1024 S/s 1 kS
1280-10.24 kS/s 10 kS
12.8, 25.6, 51.2 kS/s 100 kS

Specifying a very large value for samples_per_channel could use too much of the Raspberry Pi memory. If
the memory allocation fails, the function will return RESULT_RESOURCE_UNAVAIL. The allocation could
succeed, but the lack of free memory could cause other problems in the Raspberry Pi. If you need to acquire a
high number of samples then it is better to run the scan in continuous mode and stop it when you have acquired
the desired amount of data. If a scan is already active this function will return RESULT_BUSY .

Return Result code, RESULT_SUCCESS if successful, RESULT_BUSY if a scan is already active.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• channel_mask: A bit mask of the channels to be scanned. Set each bit to enable the associated
channel (0x01 - 0x03.)

• samples_per_channel: The number of samples to acquire for each channel in the scan (finite
mode,) or can be used to set a larger scan buffer size than the default value (continuous mode.)

• options: The options bitmask.

int mcc172_a_in_scan_buffer_size(uint8_t address, uint32_t * buffer_size_samples)
Returns the size of the internal scan data buffer.

An internal data buffer is allocated for the scan when mcc172_a_in_scan_start() is called. This function returns
the total size of that buffer in samples.

Return Result code, RESULT_SUCCESS if successful, RESULT_RESOURCE_UNAVAIL if a scan is not cur-
rently active, RESULT_BAD_PARAMETER if the address is invalid or buffer_size_samples is NULL.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• buffer_size_samples: Receives the size of the buffer in samples. Each sample is a double.

int mcc172_a_in_scan_status(uint8_t address, uint16_t * status, uint32_t * samples_per_channel)
Reads status and number of available samples from an analog input scan.

The scan is started with mcc172_a_in_scan_start() and runs in a background thread that reads the data from
the board into an internal scan buffer. This function reads the status of the scan and amount of data in the scan
buffer.

Return Result code, RESULT_SUCCESS if successful, RESULT_RESOURCE_UNAVAIL if a scan has not been
started under this instance of the device.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• status: Receives the scan status, an ORed combination of the flags:

– STATUS_HW_OVERRUN: The device scan buffer was not read fast enough and data was lost.

– STATUS_BUFFER_OVERRUN: The thread scan buffer was not read by the user fast enough and
data was lost.

90 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

– STATUS_TRIGGERED: The trigger conditions have been met.

– STATUS_RUNNING: The scan is running.

• samples_per_channel: Receives the number of samples per channel available in the scan thread
buffer.

int mcc172_a_in_scan_read(uint8_t address, uint16_t * status, int32_t samples_per_channel, dou-
ble timeout, double * buffer, uint32_t buffer_size_samples, uint32_t * sam-
ples_read_per_channel)

Reads status and multiple samples from an analog input scan.

The scan is started with mcc172_a_in_scan_start() and runs in a background thread that reads the data from the
board into an internal scan buffer. This function reads the data from the scan buffer, and returns the current scan
status.

Return Result code, RESULT_SUCCESS if successful, RESULT_RESOURCE_UNAVAIL if a scan is not active.

Parameters

• address: The board address (0 - 7). Board must already be opened.

• status: Receives the scan status, an ORed combination of the flags:

– STATUS_HW_OVERRUN: The device scan buffer was not read fast enough and data was lost.

– STATUS_BUFFER_OVERRUN: The thread scan buffer was not read by the user fast enough and
data was lost.

– STATUS_TRIGGERED: The trigger conditions have been met.

– STATUS_RUNNING: The scan is running.

• samples_per_channel: The number of samples per channel to read. Specify -1 to read all
available samples in the scan thread buffer, ignoring timeout. If buffer does not contain enough
space then the function will read as many samples per channel as will fit in buffer.

• timeout: The amount of time in seconds to wait for the samples to be read. Specify a negative
number to wait indefinitely or 0 to return immediately with whatever samples are available (up to the
value of samples_per_channel or buffer_size_samples.)

• buffer: The user data buffer that receives the samples.

• buffer_size_samples: The size of the buffer in samples. Each sample is a double.

• samples_read_per_channel: Returns the actual number of samples read from each channel.

int mcc172_a_in_scan_channel_count(uint8_t address)
Return the number of channels in the current analog input scan.

This function returns 0 if no scan is active.

Return The number of channels, 0 - 2.

Parameters

• address: The board address (0 - 7). Board must already be opened.

int mcc172_a_in_scan_stop(uint8_t address)
Stops an analog input scan.

The scan is stopped immediately. The scan data that has been read into the scan buffer is available until
mcc172_a_in_scan_cleanup() is called.

4.6. MCC 172 functions and data 91



MCC DAQ HAT Library Documentation, Release 1.4.0

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

int mcc172_a_in_scan_cleanup(uint8_t address)
Free analog input scan resources after the scan is complete.

Return Result code, RESULT_SUCCESS if successful.

Parameters

• address: The board address (0 - 7). Board must already be opened.

4.6.2 Data definitions

4.6.2.1 Device Info

struct MCC172DeviceInfo
MCC 172 constant device information.

Public Members

const uint8_t NUM_AI_CHANNELS
The number of analog input channels (2.)

const int32_t AI_MIN_CODE
The minimum ADC code (-8,388,608.)

const int32_t AI_MAX_CODE
The maximum ADC code (8,388,607.)

const double AI_MIN_VOLTAGE
The input voltage corresponding to the minimum code (-5.0V.)

const double AI_MAX_VOLTAGE
The input voltage corresponding to the maximum code (+5.0V - 1 LSB.)

const double AI_MIN_RANGE
The minimum voltage of the input range (-5.0V.)

const double AI_MAX_RANGE
The maximum voltage of the input range (+5.0V.)

4.6.2.2 Source Types

enum SourceType
Clock / trigger source definitions.

Values:

SOURCE_LOCAL = 0
Use a local-only source.

SOURCE_MASTER = 1
Use a local source and set it as master.

92 Chapter 4. C Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

SOURCE_SLAVE = 2
Use a separate master source.

4.6. MCC 172 functions and data 93



MCC DAQ HAT Library Documentation, Release 1.4.0

94 Chapter 4. C Library Reference



CHAPTER

FIVE

PYTHON LIBRARY REFERENCE

The Python library is organized as a global method for listing the DAQ HAT boards attached to your system, and
board-specific classes to provide full functionality for each type of board. The Python package is named daqhats.

5.1 Global methods and data

5.1.1 Methods

Method Description
hat_list() Return a list of detected DAQ HAT boards.
interrupt_state() Read the current DAQ HAT interrupt status.
wait_for_interrupt() Wait for a DAQ HAT interrupt to occur.
interrupt_callback_enable() Enable an interrupt callback function.
interrupt_callback_disable() Disable interrupt callback function.

daqhats.hat_list(filter_by_id=0)
Return a list of detected DAQ HAT boards.

Scans certain locations for information from the HAT EEPROMs. Verifies the contents are valid HAT EEPROM
contents and returns a list of namedtuples containing information on the HAT. Info will only be returned for
DAQ HATs. The EEPROM contents are stored in /etc/mcc/hats when using the daqhats_read_eeproms tool, or
in /proc/device-tree in the case of a single HAT at address 0.

Parameters filter_by_id (int) – If this is HatIDs.ANY return all DAQ HATs found. Otherwise,
return only DAQ HATs with ID matching this value.

Returns

A list of namedtuples, the number of elements match the number of DAQ HATs found. Each
namedtuple will contain the following field names:

• address (int): device address

• id (int): device product ID, identifies the type of DAQ HAT

• version (int): device hardware version

• product_name (str): device product name

Return type list

daqhats.interrupt_state()
Read the current DAQ HAT interrupt status

95



MCC DAQ HAT Library Documentation, Release 1.4.0

Returns the status of the interrupt signal, True if active or False if inactive. The signal can be shared by multiple
DAQ HATs so the status of each board that may generate an interrupt must be read and the interrupt source(s)
cleared before the interrupt will become inactive.

This function only applies when using devices that can generate an interrupt:

• MCC 152

Returns The interrupt status.

Return type bool

daqhats.wait_for_interrupt(timeout)
Wait for an interrupt from a DAQ HAT to occur.

Pass a timeout in seconds. Pass -1 to wait forever or 0 to return immediately. If the interrupt has not occurred
before the timeout elapses the function will return False.

This function only applies when using devices that can generate an interrupt:

• MCC 152

Returns The interrupt status - True = interrupt active, False = interrupt inactive.

Return type bool

daqhats.interrupt_callback_enable(callback, user_data)
Enable an interrupt callback function.

Set a function that will be called when a DAQ HAT interrupt occurs.

The function will be called when the DAQ HAT interrupt signal becomes active, and cannot be called again until
the interrupt signal becomes inactive. Active sources become inactive when manually cleared (such as reading
the digital I/O inputs or clearing the interrupt enable.) If not latched, an active source also becomes inactive
when the value returns to the original value (the value at the source before the interrupt was generated.)

There may only be one callback function at a time; if you call this when a function is already set as the callback
function then it will be replaced with the new function and the old function will no longer be called if an interrupt
occurs. The data argument to this function will be passed to the callback function when it is called.

The callback function must have the form “callback(user_data)”. For example:

def my_function(data):
# This is my callback function.
print("The interrupt occurred, and returned {}.".format(data))
data[0] += 1

value = [0]
interrupt_enable_callback(my_function, value)

In this example my_function() will be called when the interrupt occurs, and the list value will be passed as the
user_data. Inside the callback it will be received as data, but will still be the same object so any changes made
will be present in the original value. Every time the interrupt occurs value[0] will be incremented and a higher
number will be printed.

An integer was not used for value because integers are immutable in Python so the original value would never
change.

The callback may be disabled with interrupt_callback_disable().

This function only applies when using devices that can generate an interrupt:

96 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

• MCC 152

Parameters

• callback (callback function) – The callback function.

• user_data (object) – callback function.

Raises Exception – Internal error enabling the callback.

daqhats.interrupt_callback_disable()
Disable interrupt callbacks.

Raises Exception – Internal error disabling the callback.

5.1.2 Data

5.1.2.1 Hat IDs

class daqhats.HatIDs
Known MCC HAT IDs.

ANY = 0
Match any MCC ID in hat_list()

MCC_118 = 322
MCC 118 ID

MCC_128 = 326
MCC 128 ID

MCC_134 = 323
MCC 134 ID

MCC_152 = 324
MCC 152 ID

MCC_172 = 325
MCC 172 ID

5.1.2.2 Trigger modes

class daqhats.TriggerModes
Scan trigger input modes.

RISING_EDGE = 0
Start the scan on a rising edge of TRIG.

FALLING_EDGE = 1
Start the scan on a falling edge of TRIG.

ACTIVE_HIGH = 2
Start the scan any time TRIG is high.

ACTIVE_LOW = 3
Start the scan any time TRIG is low.

5.1. Global methods and data 97



MCC DAQ HAT Library Documentation, Release 1.4.0

5.1.2.3 Scan / read option flags

class daqhats.OptionFlags
Scan / read option flags. See individual methods for detailed descriptions.

DEFAULT = 0
Use default behavior.

NOSCALEDATA = 1
Read / write unscaled data.

NOCALIBRATEDATA = 2
Read / write uncalibrated data.

EXTCLOCK = 4
Use an external clock source.

EXTTRIGGER = 8
Use an external trigger source.

CONTINUOUS = 16
Run until explicitly stopped.

TEMPERATURE = 32
Return temperature (MCC 134)

5.1.3 HatError class

exception daqhats.HatError(address, value)
Exceptions raised for MCC DAQ HAT specific errors.

Parameters

• address (int) – the address of the board that caused the exception.

• value (str) – the exception description.

5.2 MCC 118 class

5.2.1 Methods

class daqhats.mcc118(address=0)
The class for an MCC 118 board.

Parameters address (int) – board address, must be 0-7.

Raises HatError – the board did not respond or was of an incorrect type

98 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

Methods

Method Description
mcc118.info() Get info about this device type.
mcc118.firmware_version() Get the firmware version.
mcc118.serial() Read the serial number.
mcc118.blink_led() Blink the MCC 118 LED.
mcc118.calibration_date() Read the calibration date.
mcc118.calibration_coefficient_read() Read the calibration coefficients for a channel.
mcc118.calibration_coefficient_write() Write the calibration coefficients for a channel.
mcc118.trigger_mode() Set the external trigger input mode.
mcc118.a_in_read() Read an analog input channel.
mcc118.a_in_scan_actual_rate() Read the actual sample rate for a requested sam-

ple rate.
mcc118.a_in_scan_start() Start a hardware-paced analog input scan.
mcc118.a_in_scan_buffer_size() Read the size of the internal scan data buffer.
mcc118.a_in_scan_read() Read scan status / data (list).
mcc118.a_in_scan_read_numpy() Read scan status / data (NumPy array).
mcc118.a_in_scan_channel_count() Get the number of channels in the current scan.
mcc118.a_in_scan_stop() Stop the scan.
mcc118.a_in_scan_cleanup() Free scan resources.
mcc118.address() Read the board’s address.

static info()
Return constant information about this type of device.

Returns

A namedtuple containing the following field names:

• NUM_AI_CHANNELS (int): The number of analog input channels (8.)

• AI_MIN_CODE (int): The minimum ADC code (0.)

• AI_MAX_CODE (int): The maximum ADC code (4095.)

• AI_MIN_VOLTAGE (float): The voltage corresponding to the minimum ADC code (-
10.0.)

• AI_MAX_VOLTAGE (float): The voltage corresponding to the maximum ADC code
(+10.0 - 1 LSB)

• AI_MIN_RANGE (float): The minimum voltage of the input range (-10.0.)

• AI_MAX_RANGE (float): The maximum voltage of the input range (+10.0.)

Return type namedtuple

firmware_version()
Read the board firmware and bootloader versions.

Returns

A namedtuple containing the following field names:

• version (string): The firmware version, i.e “1.03”.

• bootloader_version (string): The bootloader version, i.e “1.01”.

Return type namedtuple

5.2. MCC 118 class 99



MCC DAQ HAT Library Documentation, Release 1.4.0

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

serial()
Read the serial number.

Returns The serial number.

Return type string

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

blink_led(count)
Blink the MCC 118 LED.

Setting count to 0 will cause the LED to blink continuously until blink_led() is called again with a non-zero
count.

Parameters count (int) – The number of times to blink (max 255).

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

calibration_date()
Read the calibration date.

Returns The calibration date in the format “YYYY-MM-DD”.

Return type string

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

calibration_coefficient_read(channel)
Read the calibration coefficients for a single channel.

The coefficients are applied in the library as:

calibrated_ADC_code = (raw_ADC_code * slope) + offset

Parameters channel (int) – The analog input channel (0-7.)

Returns

A namedtuple containing the following field names.

• slope (float): The slope.

• offset (float): The offset.

Return type namedtuple

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

calibration_coefficient_write(channel, slope, offset)
Temporarily write the calibration coefficients for a single channel.

The user can apply their own calibration coefficients by writing to these values. The values will reset to
the factory values from the EEPROM whenever the class is initialized. This function will fail and raise a
HatError exception if a scan is active when it is called.

The coefficients are applied in the library as:

calibrated_ADC_code = (raw_ADC_code * slope) + offset

Parameters

• channel (int) – The analog input channel (0-7.)

100 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

• slope (float) – The new slope value.

• offset (float) – The new offset value.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

trigger_mode(mode)
Set the external trigger input mode.

The available modes are:

• TriggerModes.RISING_EDGE: Start the scan when the TRIG input transitions from low to high.

• TriggerModes.FALLING_EDGE: Start the scan when the TRIG input transitions from high to
low.

• TriggerModes.ACTIVE_HIGH : Start the scan when the TRIG input is high.

• TriggerModes.ACTIVE_LOW : Start the scan when the TRIG input is low.

Parameters mode (TriggerModes) – The trigger mode.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

a_in_read(channel, options=<OptionFlags.DEFAULT: 0>)
Perform a single reading of an analog input channel and return the value.

options is an ORed combination of OptionFlags. Valid flags for this method are:

• OptionFlags.DEFAULT: Return a calibrated voltage value. Any other flags will override DE-
FAULT behavior.

• OptionFlags.NOSCALEDATA: Return an ADC code (a value between 0 and 4095) rather than
voltage.

• OptionFlags.NOCALIBRATEDATA: Return data without the calibration factors applied.

Parameters

• channel (int) – The analog input channel number, 0-7.

• options (int) – ORed combination of OptionFlags, OptionFlags.DEFAULT if un-
specified.

Returns The read value.

Return type float

Raises

• HatError – the board is not initialized, does not respond, or responds incorrectly.

• ValueError – the channel number is invalid.

a_in_scan_actual_rate(channel_count, sample_rate_per_channel)
Read the actual sample rate per channel for a requested sample rate.

The internal scan clock is generated from a 16 MHz clock source so only discrete frequency steps can be
achieved. This function will return the actual rate for a requested channel count and rate setting.

This function does not perform any actions with a board, it simply calculates the rate.

Parameters

• channel_count (int) – The number of channels in the scan, 1-8.

5.2. MCC 118 class 101



MCC DAQ HAT Library Documentation, Release 1.4.0

• sample_rate_per_channel (float) – The desired per-channel rate of the internal sampling
clock, max 100,000.0.

Returns The actual sample rate.

Return type float

Raises ValueError – a scan argument is invalid.

a_in_scan_start(channel_mask, samples_per_channel, sample_rate_per_channel, options)
Start a hardware-paced analog input channel scan.

The scan runs as a separate thread from the user’s code. This function will allocate a scan buffer and start
the thread that reads data from the device into that buffer. The user reads the data from the scan buffer and
the scan status using the a_in_scan_read() function. a_in_scan_stop() is used to stop a con-
tinuous scan, or to stop a finite scan before it completes. The user must call a_in_scan_cleanup()
after the scan has finished and all desired data has been read; this frees all resources from the scan and
allows additional scans to be performed.

The scan state has defined terminology:

• Active: a_in_scan_start() has been called and the device may be acquiring data or finished
with the acquisition. The scan has not been cleaned up by calling a_in_scan_cleanup(), so
another scan may not be started.

• Running: The scan is active and the device is still acquiring data. Certain methods like
a_in_read() will return an error because the device is busy.

The scan options that may be used are:

• OptionFlags.DEFAULT: Return scaled and calibrated data, internal scan clock, no trigger, and
finite operation. Any other flags will override DEFAULT behavior.

• OptionFlags.NOSCALEDATA: Return ADC codes (values between 0 and 4095) rather than volt-
age.

• OptionFlags.NOCALIBRATEDATA: Return data without the calibration factors applied.

• OptionFlags.EXTCLOCK: Use an external 3.3V or 5V logic signal at the CLK input as the scan
clock. Multiple devices can be synchronized by connecting the CLK pins together and using this
flag on all but one device so they will be clocked by the single device using its internal clock. sam-
ple_rate_per_channel is only used for buffer sizing.

• OptionFlags.EXTTRIGGER: Hold off the scan (after calling a_in_scan_start()) until the
trigger condition is met. The trigger is a 3.3V or 5V logic signal applied to the TRIG pin.

• OptionFlags.CONTINUOUS: Scans continuously until stopped by the user by calling
a_in_scan_stop() and writes data to a circular buffer. The data must be read before being
overwritten to avoid a buffer overrun error. samples_per_channel is only used for buffer sizing.

The scan buffer size will be allocated as follows:

Finite mode: Total number of samples in the scan.

Continuous mode: Either samples_per_channel or the value in the table below, whichever is greater.

Sample Rate Buffer Size (per channel)
Not specified 10 kS
0-100 S/s 1 kS
100-10k S/s 10 kS
10k-100k S/s 100 kS

102 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

Specifying a very large value for samples_per_channel could use too much of the Raspberry Pi memory. If
the memory allocation fails, the function will raise a HatError with this description. The allocation could
succeed, but the lack of free memory could cause other problems in the Raspberry Pi. If you need to
acquire a high number of samples then it is better to run the scan in continuous mode and stop it when you
have acquired the desired amount of data. If a scan is active this method will raise a HatError.

Parameters

• channel_mask (int) – A bit mask of the desired channels (0x01 - 0xFF).

• samples_per_channel (int) – The number of samples to acquire per channel (finite mode,)
or or can be used to set a larger scan buffer size than the default value (continuous mode.)

• sample_rate_per_channel (float) – The per-channel rate of the internal scan clock, or the
expected maximum rate of an external scan clock, max 100,000.0.

• options (int) – An ORed combination of OptionFlags flags that control the scan.

Raises

• HatError – a scan is active; memory could not be allocated; the board is not initialized,
does not respond, or responds incorrectly.

• ValueError – a scan argument is invalid.

a_in_scan_buffer_size()
Read the internal scan data buffer size.

An internal data buffer is allocated for the scan when a_in_scan_start() is called. This function
returns the total size of that buffer in samples.

Returns The buffer size in samples.

Return type int

Raises HatError – the board is not initialized or no scan buffer is allocated (a scan is not
active).

a_in_scan_status()
Read scan status and number of available samples per channel.

The analog input scan is started with a_in_scan_start() and runs in the background. This function
reads the status of that background scan and the number of samples per channel available in the scan thread
buffer.

Returns

A namedtuple containing the following field names:

• running (bool): True if the scan is running, False if it has stopped or completed.

• hardware_overrun (bool): True if the hardware could not acquire and unload samples
fast enough and data was lost.

• buffer_overrun (bool): True if the background scan buffer was not read fast enough and
data was lost.

• triggered (bool): True if the trigger conditions have been met and data acquisition started.

• samples_available (int): The number of samples per channel currently in the scan buffer.

Return type namedtuple

Raises HatError – A scan is not active, the board is not initialized, does not respond, or
responds incorrectly.

5.2. MCC 118 class 103



MCC DAQ HAT Library Documentation, Release 1.4.0

a_in_scan_read(samples_per_channel, timeout)
Read scan status and data (as a list).

The analog input scan is started with a_in_scan_start() and runs in the background. This function
reads the status of that background scan and optionally reads sampled data from the scan buffer.

Parameters

• samples_per_channel (int) – The number of samples per channel to read from the scan
buffer. Specify a negative number to return all available samples immediately and ignore
timeout or 0 to only read the scan status and return no data.

• timeout (float) – The amount of time in seconds to wait for the samples to be read. Specify
a negative number to wait indefinitely, or 0 to return immediately with the samples that
are already in the scan buffer (up to samples_per_channel.) If the timeout is met and
the specified number of samples have not been read, then the function will return all the
available samples and the timeout status set.

Returns

A namedtuple containing the following field names:

• running (bool): True if the scan is running, False if it has stopped or completed.

• hardware_overrun (bool): True if the hardware could not acquire and unload samples
fast enough and data was lost.

• buffer_overrun (bool): True if the background scan buffer was not read fast enough and
data was lost.

• triggered (bool): True if the trigger conditions have been met and data acquisition started.

• timeout (bool): True if the timeout time expired before the specified number of samples
were read.

• data (list of float): The data that was read from the scan buffer.

Return type namedtuple

Raises

• HatError – A scan is not active, the board is not initialized, does not respond, or re-
sponds incorrectly.

• ValueError – Incorrect argument.

a_in_scan_read_numpy(samples_per_channel, timeout)
Read scan status and data (as a NumPy array).

This function is similar to a_in_scan_read() except that the data key in the returned namedtuple is
a NumPy array of float64 values and may be used directly with NumPy functions.

Parameters

• samples_per_channel (int) – The number of samples per channel to read from the scan
buffer. Specify a negative number to read all available samples or 0 to only read the scan
status and return no data.

• timeout (float) – The amount of time in seconds to wait for the samples to be read. Specify
a negative number to wait indefinitely, or 0 to return immediately with the samples that
are already in the scan buffer. If the timeout is met and the specified number of samples
have not been read, then the function will return with the amount that has been read and
the timeout status set.

104 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

Returns

A namedtuple containing the following field names:

• running (bool): True if the scan is running, False if it has stopped or completed.

• hardware_overrun (bool): True if the hardware could not acquire and unload samples
fast enough and data was lost.

• buffer_overrun (bool): True if the background scan buffer was not read fast enough and
data was lost.

• triggered (bool): True if the trigger conditions have been met and data acquisition started.

• timeout (bool): True if the timeout time expired before the specified number of samples
were read.

• data (NumPy array of float64): The data that was read from the scan buffer.

Return type namedtuple

Raises

• HatError – A scan is not active, the board is not initialized, does not respond, or re-
sponds incorrectly.

• ValueError – Incorrect argument.

a_in_scan_channel_count()
Read the number of channels in the current analog input scan.

Returns The number of channels (0 if no scan is active, 1-8 otherwise.)

Return type int

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

a_in_scan_stop()
Stops an analog input scan.

The device stops acquiring data immediately. The scan data that has been read into the scan buffer is
available until a_in_scan_cleanup() is called.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

a_in_scan_cleanup()
Free analog input scan resources after the scan is complete.

This will free the scan buffer and other resources used by the background scan and make it possible to start
another scan with a_in_scan_start().

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

address()
Return the device address.

5.3 MCC 128 class

5.3.1 Methods

class daqhats.mcc128(address=0)
The class for an MCC 128 board.

5.3. MCC 128 class 105



MCC DAQ HAT Library Documentation, Release 1.4.0

Parameters address (int) – board address, must be 0-7.

Raises HatError – the board did not respond or was of an incorrect type

Methods

Method Description
mcc128.info() Get info about this device type.
mcc128.firmware_version() Get the firmware version.
mcc128.serial() Read the serial number.
mcc128.blink_led() Blink the MCC 128 LED.
mcc128.calibration_date() Read the calibration date.
mcc128.calibration_coefficient_read() Read the calibration coefficients for a

mode/range.
mcc128.calibration_coefficient_write() Write the calibration coefficients for a

mode/range.
mcc128.trigger_mode() Set the external trigger input mode.
mcc128.a_in_mode_read() Read the analog input mode.
mcc128.a_in_mode_write() Write the analog input mode.
mcc128.a_in_range_read() Read the analog input range.
mcc128.a_in_range_write() Write the analog input range.
mcc128.a_in_read() Read an analog input channel.
mcc128.a_in_scan_actual_rate() Read the actual sample rate for a requested sam-

ple rate.
mcc128.a_in_scan_start() Start a hardware-paced analog input scan.
mcc128.a_in_scan_buffer_size() Read the size of the internal scan data buffer.
mcc128.a_in_scan_read() Read scan status / data (list).
mcc128.a_in_scan_read_numpy() Read scan status / data (NumPy array).
mcc128.a_in_scan_channel_count() Get the number of channels in the current scan.
mcc128.a_in_scan_stop() Stop the scan.
mcc128.a_in_scan_cleanup() Free scan resources.
mcc128.address() Read the board’s address.

static info()
Return constant information about this type of device.

Returns

A namedtuple containing the following field names:

• NUM_AI_MODES (int): The number of analog input modes (2.)

• NUM_AI_CHANNELS (list of int): The number of analog input channels for each mode
(8, 4.)

• AI_MIN_CODE (int): The minimum ADC code (0.)

• AI_MAX_CODE (int): The maximum ADC code (65535.)

• NUM_AI_RANGES (int): The number of analog input ranges (4.)

• AI_MIN_VOLTAGE (list of float): The voltage corresponding to the minimum ADC
code for each range (-10.0, -5.0, -2.0, -1.0.)

• AI_MAX_VOLTAGE (list of float): The voltage corresponding to the maximum ADC
code for each range (+10.0 - 1 LSB, +5.0 - 1 LSB, +2.0 - 1 LSB, +1.0 - 1 LSB.)

106 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

• AI_MIN_RANGE (list of float): The minimum voltage of the input range for each range
(-10.0, -5.0, -2.0, -1.0.)

• AI_MAX_RANGE (list of float): The maximum voltage of the input range for each range
(+10.0, +5.0, +2.0, +1.0.)

Return type namedtuple

firmware_version()
Read the board firmware version.

Returns

A namedtuple containing the following field names:

• version (string): The firmware version, i.e “1.03”.

Return type namedtuple

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

serial()
Read the serial number.

Returns The serial number.

Return type string

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

blink_led(count)
Blink the MCC 128 LED.

Setting count to 0 will cause the LED to blink continuously until blink_led() is called again with a non-zero
count.

Parameters count (int) – The number of times to blink (max 255).

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

calibration_date()
Read the calibration date.

Returns The calibration date in the format “YYYY-MM-DD”.

Return type string

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

calibration_coefficient_read(a_in_range)
Read the calibration coefficients for a specified input range.

The coefficients are applied in the library as:

calibrated_ADC_code = (raw_ADC_code * slope) + offset

Parameters a_in_range (AnalogInputRange) – The input range.

Returns

A namedtuple containing the following field names:

• slope (float): The slope.

• offset (float): The offset.

Return type namedtuple

5.3. MCC 128 class 107



MCC DAQ HAT Library Documentation, Release 1.4.0

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

calibration_coefficient_write(a_in_range, slope, offset)
Temporarily write the calibration coefficients for a specified input range.

The user can apply their own calibration coefficients by writing to these values. The values will reset to
the factory values from the EEPROM whenever the class is initialized. This function will fail and raise a
HatError exception if a scan is active when it is called.

The coefficients are applied in the library as:

calibrated_ADC_code = (raw_ADC_code * slope) + offset

Parameters

• a_in_range (AnalogInputRange) – The input range.

• slope (float) – The new slope value.

• offset (float) – The new offset value.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

trigger_mode(mode)
Set the external trigger input mode.

The available modes are:

• TriggerModes.RISING_EDGE: Start the scan when the TRIG input transitions from low to high.

• TriggerModes.FALLING_EDGE: Start the scan when the TRIG input transitions from high to
low.

• TriggerModes.ACTIVE_HIGH : Start the scan when the TRIG input is high.

• TriggerModes.ACTIVE_LOW : Start the scan when the TRIG input is low.

Parameters mode (TriggerModes) – The trigger mode.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

a_in_mode_write(a_in_mode)
This sets the analog input mode to one of the valid values:

• AnalogInputMode.SE: Single-ended (8 inputs relative to ground.)

• AnalogInputMode.DIFF: Differential (4 channels with positive and negative inputs.)

Parameters a_in_mode (AnalogInputMode) – The input mode.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

a_in_mode_read()
Read the analog input mode.

Reads the current analog input mode.

Returns The current analog input mode.

Return type AnalogInputMode

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

108 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

a_in_range_write(a_in_range)
This sets the analog input range to one of the valid values:

• AnalogInputRange.BIP_10V : +/- 10V range

• AnalogInputRange.BIP_5V : +/- 5V range

• AnalogInputRange.BIP_2V : +/- 2V range

• AnalogInputRange.BIP_1V : +/- 1V range

Parameters a_in_range (AnalogInputRange) – The input range.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

a_in_range_read()
Read the analog input range.

Reads the current analog input range.

Returns The current analog input range.

Return type AnalogInputRange

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

a_in_read(channel, options=<OptionFlags.DEFAULT: 0>)
Perform a single reading of an analog input channel and return the value.

options is an ORed combination of OptionFlags. Valid flags for this method are:

• OptionFlags.DEFAULT: Return a calibrated voltage value. Any other flags will override DE-
FAULT behavior.

• OptionFlags.NOSCALEDATA: Return an ADC code (a value between 0 and 65535) rather than
voltage.

• OptionFlags.NOCALIBRATEDATA: Return data without the calibration factors applied.

Parameters

• channel (int) – The analog input channel number, 0-7.

• options (int) – ORed combination of OptionFlags, OptionFlags.DEFAULT if un-
specified.

Returns The read value.

Return type float

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

a_in_scan_actual_rate(channel_count, sample_rate_per_channel)
Read the actual sample rate per channel for a requested sample rate.

The internal scan clock is generated from a 16 MHz clock source so only discrete frequency steps can be
achieved. This function will return the actual rate for a requested channel count and rate setting.

This function does not perform any actions with a board, it simply calculates the rate.

Parameters

• channel_count (int) – The number of channels in the scan, 1-8.

• sample_rate_per_channel (float) – The desired per-channel rate of the internal sampling
clock, max 100,000.0.

5.3. MCC 128 class 109



MCC DAQ HAT Library Documentation, Release 1.4.0

Returns The actual sample rate.

Return type float

Raises ValueError – a scan argument is invalid.

a_in_scan_start(channel_mask, samples_per_channel, sample_rate_per_channel, options)
Start a hardware-paced analog input channel scan.

The scan runs as a separate thread from the user’s code. This function will allocate a scan buffer and start
the thread that reads data from the device into that buffer. The user reads the data from the scan buffer and
the scan status using the a_in_scan_read() function. a_in_scan_stop() is used to stop a con-
tinuous scan, or to stop a finite scan before it completes. The user must call a_in_scan_cleanup()
after the scan has finished and all desired data has been read; this frees all resources from the scan and
allows additional scans to be performed.

The scan state has defined terminology:

• Active: a_in_scan_start() has been called and the device may be acquiring data or finished
with the acquisition. The scan has not been cleaned up by calling a_in_scan_cleanup(), so
another scan may not be started.

• Running: The scan is active and the device is still acquiring data. Certain methods like
a_in_read() will return an error because the device is busy.

The scan options that may be used are:

• OptionFlags.DEFAULT: Return scaled and calibrated data, internal scan clock, no trigger, and
finite operation. Any other flags will override DEFAULT behavior.

• OptionFlags.NOSCALEDATA: Return ADC codes (values between 0 and 65535) rather than volt-
age.

• OptionFlags.NOCALIBRATEDATA: Return data without the calibration factors applied.

• OptionFlags.EXTCLOCK: Use an external 3.3V or 5V logic signal at the CLK input as the scan
clock. Multiple devices can be synchronized by connecting the CLK pins together and using this
flag on all but one device so they will be clocked by the single device using its internal clock. sam-
ple_rate_per_channel is only used for buffer sizing.

• OptionFlags.EXTTRIGGER: Hold off the scan (after calling a_in_scan_start()) until the
trigger condition is met. The trigger is a 3.3V or 5V logic signal applied to the TRIG pin.

• OptionFlags.CONTINUOUS: Scans continuously until stopped by the user by calling
a_in_scan_stop() and writes data to a circular buffer. The data must be read before being
overwritten to avoid a buffer overrun error. samples_per_channel is only used for buffer sizing.

The scan buffer size will be allocated as follows:

Finite mode: Total number of samples in the scan.

Continuous mode: Either samples_per_channel or the value in the table below, whichever is greater.

Sample Rate Buffer Size (per channel)
Not specified 10 kS
0-100 S/s 1 kS
100-10k S/s 10 kS
10k-100k S/s 100 kS

Specifying a very large value for samples_per_channel could use too much of the Raspberry Pi memory. If
the memory allocation fails, the function will raise a HatError with this description. The allocation could
succeed, but the lack of free memory could cause other problems in the Raspberry Pi. If you need to

110 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

acquire a high number of samples then it is better to run the scan in continuous mode and stop it when you
have acquired the desired amount of data. If a scan is active this method will raise a HatError.

Parameters

• channel_mask (int) – A bit mask of the desired channels (0x01 - 0xFF).

• samples_per_channel (int) – The number of samples to acquire per channel (finite mode,)
or or can be used to set a larger scan buffer size than the default value (continuous mode.)

• sample_rate_per_channel (float) – The per-channel rate of the internal scan clock, or the
expected maximum rate of an external scan clock, max 100,000.0.

• options (int) – An ORed combination of OptionFlags flags that control the scan.

Raises

• HatError – a scan is active; memory could not be allocated; the board is not initialized,
does not respond, or responds incorrectly.

• ValueError – a scan argument is invalid.

a_in_scan_buffer_size()
Read the internal scan data buffer size.

An internal data buffer is allocated for the scan when a_in_scan_start() is called. This function
returns the total size of that buffer in samples.

Returns The buffer size in samples.

Return type int

Raises HatError – the board is not initialized or no scan buffer is allocated (a scan is not
active).

a_in_scan_status()
Read scan status and number of available samples per channel.

The analog input scan is started with a_in_scan_start() and runs in the background. This function
reads the status of that background scan and the number of samples per channel available in the scan thread
buffer.

Returns

A namedtuple containing the following field names:

• running (bool): True if the scan is running, False if it has stopped or completed.

• hardware_overrun (bool): True if the hardware could not acquire and unload samples
fast enough and data was lost.

• buffer_overrun (bool): True if the background scan buffer was not read fast enough and
data was lost.

• triggered (bool): True if the trigger conditions have been met and data acquisition started.

• samples_available (int): The number of samples per channel currently in the scan buffer.

Return type namedtuple

Raises HatError – A scan is not active, the board is not initialized, does not respond, or
responds incorrectly.

a_in_scan_read(samples_per_channel, timeout)
Read scan status and data (as a list).

5.3. MCC 128 class 111



MCC DAQ HAT Library Documentation, Release 1.4.0

The analog input scan is started with a_in_scan_start() and runs in the background. This function
reads the status of that background scan and optionally reads sampled data from the scan buffer.

Parameters

• samples_per_channel (int) – The number of samples per channel to read from the scan
buffer. Specify a negative number to return all available samples immediately and ignore
timeout or 0 to only read the scan status and return no data.

• timeout (float) – The amount of time in seconds to wait for the samples to be read. Specify
a negative number to wait indefinitely, or 0 to return immediately with the samples that
are already in the scan buffer (up to samples_per_channel.) If the timeout is met and
the specified number of samples have not been read, then the function will return all the
available samples and the timeout status set.

Returns

A namedtuple containing the following field names:

• running (bool): True if the scan is running, False if it has stopped or completed.

• hardware_overrun (bool): True if the hardware could not acquire and unload samples
fast enough and data was lost.

• buffer_overrun (bool): True if the background scan buffer was not read fast enough and
data was lost.

• triggered (bool): True if the trigger conditions have been met and data acquisition started.

• timeout (bool): True if the timeout time expired before the specified number of samples
were read.

• data (list of float): The data that was read from the scan buffer.

Return type namedtuple

Raises

• HatError – A scan is not active, the board is not initialized, does not respond, or re-
sponds incorrectly.

• ValueError – Incorrect argument.

a_in_scan_read_numpy(samples_per_channel, timeout)
Read scan status and data (as a NumPy array).

This function is similar to a_in_scan_read() except that the data key in the returned namedtuple is
a NumPy array of float64 values and may be used directly with NumPy functions.

Parameters

• samples_per_channel (int) – The number of samples per channel to read from the scan
buffer. Specify a negative number to read all available samples or 0 to only read the scan
status and return no data.

• timeout (float) – The amount of time in seconds to wait for the samples to be read. Specify
a negative number to wait indefinitely, or 0 to return immediately with the samples that
are already in the scan buffer. If the timeout is met and the specified number of samples
have not been read, then the function will return with the amount that has been read and
the timeout status set.

Returns

A namedtuple containing the following field names:

112 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

• running (bool): True if the scan is running, False if it has stopped or completed.

• hardware_overrun (bool): True if the hardware could not acquire and unload samples
fast enough and data was lost.

• buffer_overrun (bool): True if the background scan buffer was not read fast enough and
data was lost.

• triggered (bool): True if the trigger conditions have been met and data acquisition started.

• timeout (bool): True if the timeout time expired before the specified number of samples
were read.

• data (NumPy array of float64): The data that was read from the scan buffer.

Return type namedtuple

Raises

• HatError – A scan is not active, the board is not initialized, does not respond, or re-
sponds incorrectly.

• ValueError – Incorrect argument.

a_in_scan_channel_count()
Read the number of channels in the current analog input scan.

Returns The number of channels (0 if no scan is active, 1-8 otherwise.)

Return type int

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

a_in_scan_stop()
Stops an analog input scan.

The device stops acquiring data immediately. The scan data that has been read into the scan buffer is
available until a_in_scan_cleanup() is called.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

a_in_scan_cleanup()
Free analog input scan resources after the scan is complete.

This will free the scan buffer and other resources used by the background scan and make it possible to start
another scan with a_in_scan_start().

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

address()
Return the device address.

5.3.2 Data

5.3.2.1 Analog input modes

class daqhats.AnalogInputMode
Analog input modes.

SE = 0
Single-ended mode.

DIFF = 1
Differential mode.

5.3. MCC 128 class 113



MCC DAQ HAT Library Documentation, Release 1.4.0

5.3.2.2 Analog input ranges

class daqhats.AnalogInputRange
Analog input ranges.

BIP_10V = 0
+/- 10V input range.

BIP_5V = 1
+/- 5V input range.

BIP_2V = 2
+/- 2V input range.

BIP_1V = 3
+/- 1V input range

5.4 MCC 134 class

5.4.1 Methods

class daqhats.mcc134(address=0)
The class for an MCC 134 board.

Parameters address (int) – board address, must be 0-7.

Raises HatError – the board did not respond or was of an incorrect type

Methods

Method Description
mcc134.info() Get info about this device type.
mcc134.serial() Read the serial number.
mcc134.calibration_date() Read the calibration date.
mcc134.calibration_coefficient_read()Read the calibration coefficients for a channel.
mcc134.calibration_coefficient_write()Write the calibration coefficients for a channel.
mcc134.tc_type_write() Write the thermocouple type for a channel.
mcc134.tc_type_read() Read the thermocouple type for a channel.
mcc134.update_interval_write() Write the temperature update interval.
mcc134.update_interval_read() Read the temperature update interval.
mcc134.t_in_read() Read a temperature input channel.
mcc134.a_in_read() Read an analog input channel.
mcc134.cjc_read() Read a CJC temperature
mcc134.address() Read the board’s address.

OPEN_TC_VALUE = -9999.0
Return value for an open thermocouple.

OVERRANGE_TC_VALUE = -8888.0
Return value for thermocouple voltage outside the valid range.

COMMON_MODE_TC_VALUE = -7777.0
Return value for thermocouple input outside the common-mode range.

114 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

static info()
Return constant information about this type of device.

Returns

A namedtuple containing the following field names:

• NUM_AI_CHANNELS (int): The number of analog input channels (4.)

• AI_MIN_CODE (int): The minimum ADC code (-8,388,608.)

• AI_MAX_CODE (int): The maximum ADC code (8,388,607.)

• AI_MIN_VOLTAGE (float): The voltage corresponding to the minimum ADC code (-
0.078125.)

• AI_MAX_VOLTAGE (float): The voltage corresponding to the maximum ADC code
(+0.078125 - 1 LSB)

• AI_MIN_RANGE (float): The minimum voltage of the input range (-0.078125.)

• AI_MAX_RANGE (float): The maximum voltage of the input range (+0.078125.)

Return type namedtuple

serial()
Read the serial number.

Returns The serial number.

Return type string

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

calibration_date()
Read the calibration date.

Returns The calibration date in the format “YYYY-MM-DD”.

Return type string

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

calibration_coefficient_read(channel)
Read the calibration coefficients for a single channel.

The coefficients are applied in the library as:

calibrated_ADC_code = (raw_ADC_code * slope) + offset

Parameters channel (int) – The thermocouple channel (0-3.)

Returns

A namedtuple containing the following field names:

• slope (float): The slope.

• offset (float): The offset.

Return type namedtuple

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

5.4. MCC 134 class 115



MCC DAQ HAT Library Documentation, Release 1.4.0

calibration_coefficient_write(channel, slope, offset)
Temporarily write the calibration coefficients for a single channel.

The user can apply their own calibration coefficients by writing to these values. The values will reset to
the factory values from the EEPROM whenever the class is initialized.

The coefficients are applied in the library as:

calibrated_ADC_code = (raw_ADC_code * slope) + offset

Parameters

• channel (int) – The thermocouple channel (0-3.)

• slope (float) – The new slope value.

• offset (float) – The new offset value.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

tc_type_write(channel, tc_type)
Write the thermocouple type for a channel.

Enables a channel and tells the library what thermocouple type is connected to the channel. This is needed
for correct temperature calculations. The type is one of TcTypes and the board will default to all channels
disabled (set to TcTypes.DISABLED) when it is first opened.

Parameters

• channel (int) – The analog input channel number, 0-3.

• tc_type (TcTypes) – The thermocouple type.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

tc_type_read(channel)
Read the thermocouple type for a channel.

Reads the current thermocouple type for the specified channel. The type is one of TcTypes and the board
will default to all channels disable (set to TcTypes.DISABLED) when it is first opened.

Parameters channel (int) – The analog input channel number, 0-3.

Returns int: The thermocouple type.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

update_interval_write(interval)
Write the temperature update interval.

Tells the MCC 134 library how often to update temperatures, with the interval specified in seconds. The
library defaults to updating every second, but you may increase this interval if you do not plan to call
t_in_read() very often. This will reduce the load on shared resources for other DAQ HATs.

Parameters interval (int) – The interval in seconds, 1 - 255.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

update_interval_read()
Read the temperature update interval.

Reads the library temperature update rate in seconds.

Returns int: The update interval.

116 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

t_in_read(channel)
Read a thermocouple input channel temperature.

The channel must be enabled with tc_type_write() or the method will raise a ValueError exception.

This method returns immediately with the most recent temperature reading for the specified channel. When
a board is open, the library will read each channel approximately once per second. There will be a delay
when the board is first opened because the read thread has to read the cold junction compensation sensors
and thermocouple inputs before it can return the first value.

The method returns the value as degrees Celsius. The temperature value can have some special values for
abnormal conditions:

• mcc134.OPEN_TC_VALUE if an open thermocouple is detected.

• mcc134.OVERRANGE_TC_VALUE if a value outside valid thermocouple voltage is detected.

• mcc134.COMMON_MODE_TC_VALUE if a common-mode voltage error is detected. This occurs
when thermocouples on the same MCC 134 are at different voltages.

Parameters channel (int) – The analog input channel number, 0-3.

Returns The thermocouple temperature.

Return type float

Raises

• HatError – the board is not initialized, does not respond, or responds incorrectly.

• ValueError – the channel number is invalid or the channel is disabled.

a_in_read(channel, options=<OptionFlags.DEFAULT: 0>)
Read an analog input channel and return the value.

The channel must be enabled with tc_type_write() or the method will raise a ValueError exception.

The returned voltage can have a special value to indicate abnormal conditions:

• mcc134.COMMON_MODE_TC_VALUE if a common-mode voltage error is detected. This occurs
when thermocouples on the same MCC 134 are at different voltages.

options is an ORed combination of OptionFlags. Valid flags for this method are:

• OptionFlags.DEFAULT: Return a calibrated voltage value. Any other flags will override DE-
FAULT behavior.

• OptionFlags.NOSCALEDATA: Return an ADC code (a value between -8,388,608 and 8,388,607)
rather than voltage.

• OptionFlags.NOCALIBRATEDATA: Return data without the calibration factors applied.

Parameters

• channel (int) – The analog input channel number, 0-3.

• options (int) – ORed combination of OptionFlags, OptionFlags.DEFAULT if un-
specified.

Returns The read value.

Return type float

5.4. MCC 134 class 117



MCC DAQ HAT Library Documentation, Release 1.4.0

Raises

• HatError – the board is not initialized, does not respond, or responds incorrectly.

• ValueError – the channel number is invalid.

cjc_read(channel)
Read the cold junction compensation temperature for a specified channel.

Reads the cold junction sensor temperature for the specified thermocouple terminal. The library automati-
cally performs cold junction compensation, so this function is only needed for informational use or if you
want to perform your own compensation. The temperature is returned in degress C.

Parameters channel (int) – The analog input channel number, 0-3.

Returns The read value.

Return type float

Raises

• HatError – the board is not initialized, does not respond, or responds incorrectly.

• ValueError – the channel number is invalid.

address()
Return the device address.

5.4.2 Data

5.4.2.1 Thermocouple types

class daqhats.TcTypes
Thermocouple types.

TYPE_J = 0
Type J

TYPE_K = 1
Type K

TYPE_T = 2
Type T

TYPE_E = 3
Type E

TYPE_R = 4
Type R

TYPE_S = 5
Type S

TYPE_B = 6
Type B

TYPE_N = 7
Type N

DISABLED = 255
Disabled

118 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

5.5 MCC 152 class

5.5.1 Methods

class daqhats.mcc152(address=0)
The class for an MCC 152 board.

Parameters address (int) – board address, must be 0-7.

Raises HatError – the board did not respond or was of an incorrect type

Methods

Method Description
mcc152.info() Get info about this device type.
mcc152.serial() Read the serial number.
mcc152.a_out_write() Write an analog output channel.
mcc152.a_out_write_all() Write all analog output channels.
mcc152.dio_reset() Reset the digital I/O to the default configuration.
mcc152.dio_input_read_bit() Read a digital input.
mcc152.dio_input_read_port() Read all digital inputs.
mcc152.dio_input_read_tuple() Read all digital inputs as a tuple.
mcc152.dio_output_write_bit() Write a digital output.
mcc152.dio_output_write_port() Write all digital outputs.
mcc152.dio_output_write_dict() Write multiple digital outputs with a dictionary.
mcc152.dio_output_read_bit() Read the state of a digital output.
mcc152.dio_output_read_port() Read the state of all digital outputs.
mcc152.dio_output_read_tuple() Read the state of all digital outputs as a tuple.
mcc152.dio_int_status_read_bit() Read the interrupt status for a single channel.
mcc152.dio_int_status_read_port() Read the interrupt status for all channels.
mcc152.dio_int_status_read_tuple() Read the interrupt status for all channels as a tuple.
mcc152.dio_config_write_bit() Write a digital I/O configuration item value for a sin-

gle channel.
mcc152.dio_config_write_port() Write a digital I/O configuration item value for all

channels.
mcc152.dio_config_write_dict() Write a digital I/O configuration item value for mul-

tiple channels.
mcc152.dio_config_read_bit() Read a digital I/O configuration item value for a sin-

gle channel.
mcc152.dio_config_read_port() Read a digital I/O configuration item value for all

channels.
mcc152.dio_config_read_tuple() Read a digital I/O configuration item value for all

channels as a tuple.
mcc152.address() Read the board’s address.

static info()
Return constant information about this type of device.

Returns

A namedtuple containing the following field names:

• NUM_DIO_CHANNELS (int): The number of digital I/O channels (8.)

5.5. MCC 152 class 119



MCC DAQ HAT Library Documentation, Release 1.4.0

• NUM_AO_CHANNELS (int): The number of analog output channels (2.)

• AO_MIN_CODE (int): The minimum DAC code (0.)

• AO_MAX_CODE (int): The maximum DAC code (4095.)

• AO_MIN_VOLTAGE (float): The voltage corresponding to the minimum DAC code
(0.0.)

• AO_MAX_VOLTAGE (float): The voltage corresponding to the maximum DAC code
(+5.0 - 1 LSB)

• AO_MIN_RANGE (float): The minimum voltage of the output range (0.0.)

• AO_MAX_RANGE (float): The maximum voltage of the output range (+5.0.)

Return type namedtuple

serial()
Read the serial number.

Returns The serial number.

Return type string

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

a_out_write(channel, value, options=<OptionFlags.DEFAULT: 0>)
Write a single analog output channel value. The value will be limited to the range of the DAC without
raising an exception.

options is an OptionFlags value. Valid flags for this method are:

• OptionFlags.DEFAULT: Write a voltage value (0 - 5).

• OptionFlags.NOSCALEDATA: Write a DAC code (a value between 0 and 4095) rather than volt-
age.

Parameters

• channel (int) – The analog output channel number, 0-1.

• value (float) – The value to write.

• options (int) – An OptionFlags value, OptionFlags.DEFAULT if unspecified.

Raises

• HatError – the board is not initialized, does not respond, or responds incorrectly.

• ValueError – an argument is invalid.

a_out_write_all(values, options=<OptionFlags.DEFAULT: 0>)
Write all analog output channels simultaneously.

options is an OptionFlags value. Valid flags for this method are:

• OptionFlags.DEFAULT: Write voltage values (0 - 5).

• OptionFlags.NOSCALEDATA: Write DAC codes (values between 0 and 4095) rather than volt-
age.

Parameters

• values (list of float) – The values to write, in channel order. There must be at least two
values, but only the first two will be used.

120 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

• options (int) – An OptionFlags value, OptionFlags.DEFAULT if unspecified.

Raises

• HatError – the board is not initialized, does not respond, or responds incorrectly.

• ValueError – an argument is invalid.

dio_reset()
Reset the DIO to the default configuration.

• All channels input

• Output registers set to 1

• Input inversion disabled

• No input latching

• Pull-up resistors enabled

• All interrupts disabled

• Push-pull output type

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

dio_input_read_bit(channel)
Read a single digital input channel.

Returns 0 if the input is low, 1 if it is high.

If the specified channel is configured as an output this will return the value present at the terminal.

This method reads the entire input register even though a single channel is specified, so care must be taken
when latched inputs are enabled. If a latched input changes between input reads then changes back to
its original value, the next input read will report the change to the first value then the following read will
show the original value. If another input is read then this input change could be missed so it is best to use
dio_input_read_port() or dio_input_read_tuple() when using latched inputs.

Parameters channel (int) – The DIO channel number, 0-7.

Returns The input value.

Return type int

Raises

• HatError – the board is not initialized, does not respond, or responds incorrectly.

• ValueError – an argument is invalid.

dio_input_read_port()
Read all digital input channels.

Returns the values as an integer with a value of 0 - 255. Each channel is represented by a bit in the integer
(bit 0 is channel 0, etc.)

The value of a specific input can be found by examining the bit at that location. For example, to act on the
channel 3 input:

inputs = mcc152.dio_input_read_port()
if (inputs & (1 << 3)) == 0:

print("channel 3 is 0")

(continues on next page)

5.5. MCC 152 class 121



MCC DAQ HAT Library Documentation, Release 1.4.0

(continued from previous page)

else:
print("channel 3 is 1")

If a channel is configured as an output this will return the value present at the terminal.

Care must be taken when latched inputs are enabled. If a latched input changes between input reads then
changes back to its original value, the next input read will report the change to the first value then the
following read will show the original value.

Returns int: The input values.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

dio_input_read_tuple()
Read all digital inputs at once as a tuple.

Returns a tuple of all input values in channel order. For example, to compare the channel 1 input to the
channel 3 input:

inputs = mcc152.dio_input_read_tuple()
if inputs[1] == inputs[3]:

print("channel 1 and channel 3 inputs are the same")

If a channel is configured as an output this will return the value present at the terminal.

Care must be taken when latched inputs are enabled. If a latched input changes between input reads then
changes back to its original value, the next input read will report the change to the first value then the
following read will show the original value.

Returns tuple of int: The input values.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

dio_output_write_bit(channel, value)
Write a single digital output channel.

If the specified channel is configured as an input this will not have any effect at the terminal, but allows
the output register to be loaded before configuring the channel as an output.

Parameters

• channel (int) – The digital channel number, 0-7.

• value (int) – The output value, 0 or 1.

Raises

• HatError – the board is not initialized, does not respond, or responds incorrectly.

• ValueError – an argument is invalid.

dio_output_write_port(values)
Write all digital output channel values.

Pass an integer in the range of 0 - 255, where each bit represents the value of the associated channel (bit
0 is channel 0, etc.) If a specified channel is configured as an input this will not have any effect at the
terminal, but allows the output register to be loaded before configuring the channel as an output.

To change specific outputs without affecting other outputs first read the output values with
dio_output_read_port(), change the desired bits in the result, then write them back.

122 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

For example, to set channels 0 and 2 to 1 without affecting the other outputs:

values = mcc152.dio_output_read_port()
values |= 0x05
mcc152.dio_output_write_port(values)

Parameters values (integer) – The output values.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

dio_output_write_dict(value_dict)
Write multiple digital output channel values.

Pass a dictionary containing channel:value pairs. If a channel is repeated in the dictionary then the last
value will be used. If a specified channel is configured as an input this will not have any effect at the
terminal, but allows the output register to be loaded before configuring the channel as an output.

For example, to set channels 0 and 2 to 1 without affecting the other outputs:

values = { 0:1, 2:1 }
mcc152.dio_output_write_dict(values)

Parameters value_dict (dictionary) – The output values in a dictionary of channel:value pairs.

Raises

• HatError – the board is not initialized, does not respond, or responds incorrectly.

• ValueError – an argument is invalid.

dio_output_read_bit(channel)
Read a single digital output channel value.

This function returns the value stored in the output register. It may not represent the value at the terminal
if the channel is configured as input or open-drain output.

Parameters channel (int) – The digital channel number, 0-7.

Returns The output value.

Return type int

Raises

• HatError – the board is not initialized, does not respond, or responds incorrectly.

• ValueError – an argument is invalid.

dio_output_read_port()
Read all digital output channel values.

Returns the values as an integer with a value of 0 - 255. Each channel is represented by a bit in the integer
(bit 0 is channel 0, etc.) The value of a specific output can be found by examining the bit at that location.

This function returns the values stored in the output register. They may not represent the value at the
terminal if the channel is configured as input or open-drain output.

Returns int: The output values.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

5.5. MCC 152 class 123



MCC DAQ HAT Library Documentation, Release 1.4.0

dio_output_read_tuple()
Read all digital output channel values at once as a tuple.

Returns a tuple of all output values in channel order. For example, to compare the channel 1 output to the
channel 3 output:

outputs = mcc152.dio_output_read_tuple()
if outputs[1] == outputs[3]:

print("channel 1 and channel 3 outputs are the same")

This function returns the values stored in the output register. They may not represent the value at the
terminal if the channel is configured as input or open-drain output.

Returns tuple of int: The output values.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

dio_int_status_read_bit(channel)
Read the interrupt status for a single channel.

Returns 0 if the input is not generating an interrupt, 1 if it is generating an interrupt.

Returns int: The interrupt status value.

Raises

• HatError – the board is not initialized, does not respond, or responds incorrectly.

• ValueError – an argument is invalid.

dio_int_status_read_port()
Read the interrupt status for all channels.

Returns the values as an integer with a value of 0 - 255. Each channel is represented by a bit in the integer
(bit 0 is channel 0, etc.) The status for a specific input can be found by examining the bit at that location.
Each bit will be 0 if the channel is not generating an interrupt or 1 if it is generating an interrupt.

Returns int: The interrupt status values.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

dio_int_status_read_tuple()
Read the interrupt status for all channels as a tuple.

Returns a tuple of all interrupt status values in channel order. Each value will be 0 if the channel is not
generating an interrupt or 1 if it is generating an interrupt. For example, to see if an interrupt has occurred
on channel 2 or 4:

status = mcc152.dio_int_status_read_tuple()
if status[2] == 1 or status[4] == 1:

print("an interrupt has occurred on channel 2 or 4")

Returns tuple of int: The status values.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

124 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

dio_config_write_bit(channel, item, value)
Write a digital I/O configuration value for a single channel.

There are several configuration items that may be written for the digital I/O. The item is selected with the
item argument, which may be one of the DIOConfigItem values:

• DIOConfigItem.DIRECTION : Set the digital I/O channel direction by passing 0 for output and
1 for input.

• DIOConfigItem.PULL_CONFIG: Configure the pull-up/down resistor by passing 0 for pull-
down or 1 for pull-up. The resistor may be enabled or disabled with the DIOConfigItem.
PULL_ENABLE item.

• DIOConfigItem.PULL_ENABLE: Enable or disable the pull-up/down resistor by passing 0 for
disabled or 1 for enabled. The resistor is configured for pull-up/down with the DIOConfigItem.
PULL_CONFIG item. The resistor is automatically disabled if the bit is set to output and is configured
as open-drain.

• DIOConfigItem.INPUT_INVERT: Enable inverting the input by passing a 0 for normal input or
1 for inverted.

• DIOConfigItem.INPUT_LATCH : Enable input latching by passing 0 for non-latched or 1 for
latched.

When the input is non-latched, reads show the current status of the input. A state change in the input
generates an interrupt (if it is not masked). A read of the input clears the interrupt. If the input goes
back to its initial logic state before the input is read, then the interrupt is cleared.

When the input is latched, a change of state of the input generates an interrupt and the input logic
value is loaded into the input port register. A read of the input will clear the interrupt. If the input
returns to its initial logic state before the input is read, then the interrupt is not cleared and the input
register keeps the logic value that initiated the interrupt. The next read of the input will show the
initial state. Care must be taken when using bit reads on the input when latching is enabled - the bit
method still reads the entire input register so a change on another bit could be missed. It is best to use
port or tuple input reads when using latching.

If the input is changed from latched to non-latched, a read from the input reflects the current terminal
logic level. If the input is changed from non-latched to latched input, the read from the input represents
the latched logic level.

• DIOConfigItem.OUTPUT_TYPE: Set the output type by writing 0 for push-pull or 1 for open-
drain. This setting affects all outputs so is not a per-channel setting and the channel argument is
ignored. It should be set to the desired type before using DIOConfigItem.DIRECTION item to
set channels as outputs. Internal pull-up/down resistors are disabled when a bit is set to output and is
configured as open-drain, so external resistors should be used.

• DIOConfigItem.INT_MASK: Enable or disable interrupt generation by masking the interrupt.
Write 0 to enable the interrupt or 1 to mask (disable) it.

All MCC 152s share a single interrupt signal to the CPU, so when an interrupt occurs the user
must determine the source, optionally act on the interrupt, then clear that source so that other in-
terrupts may be detected. The current interrupt state may be read with interrupt_state().
A user program may wait for the interrupt to become active with wait_for_interrupt(),
or may register an interrupt callback function with interrupt_callback_enable(). This
allows the user to wait for a change on one or more inputs without constantly reading the
inputs. The source of the interrupt may be determined by reading the interrupt status of
each MCC 152 with dio_int_status_read_bit(), dio_int_status_read_port()
or dio_int_status_read_tuple(), and all active interrupt sources must be cleared be-
fore the interrupt will become inactive. The interrupt is cleared by reading the input with
dio_input_read_bit(), dio_input_read_port(), or dio_input_read_tuple().

5.5. MCC 152 class 125



MCC DAQ HAT Library Documentation, Release 1.4.0

Parameters

• channel (integer) – The digital I/O channel, 0 - 7

• item (integer) – The configuration item, one of DIOConfigItem.

• value (integer) – The configuration value.

Raises

• HatError – the board is not initialized, does not respond, or responds incorrectly.

• ValueError – an argument is invalid.

dio_config_write_port(item, value)
Write a digital I/O configuration value for all channels.

There are several configuration items that may be written for the digital I/O. They are written for all
channels at once using an 8-bit value passed in value, where each bit corresponds to a channel (bit 0 is
channel 0, etc.) The item is selected with the item argument, which may be one of the DIOConfigItem
values.

• DIOConfigItem.DIRECTION : Set the digital I/O channel directions by passing 0 in a bit for
output and 1 for input.

• DIOConfigItem.PULL_CONFIG: Configure the pull-up/down resistors by passing 0 in a bit for
pull-down or 1 for pull-up. The resistors may be enabled or disabled with the DIOConfigItem.
PULL_ENABLE item.

• DIOConfigItem.PULL_ENABLE: Enable or disable pull-up/down resistors by passing 0 in
a bit for disabled or 1 for enabled. The resistors are configured for pull-up/down with the
DIOConfigItem.PULL_CONFIG item. The resistors are automatically disabled if the bits are
set to output and configured as open-drain.

• DIOConfigItem.INPUT_INVERT: Enable inverting inputs by passing a 0 in a bit for normal
input or 1 for inverted.

• DIOConfigItem.INPUT_LATCH : Enable input latching by passing 0 in a bit for non-latched or
1 for latched.

When the input is non-latched, reads show the current status of the input. A state change in the
corresponding input generates an interrupt (if it is not masked). A read of the input clears the interrupt.
If the input goes back to its initial logic state before the input is read, then the interrupt is cleared.
When the input is latched, a change of state of the input generates an interrupt and the input logic
value is loaded into the input port register. A read of the input will clear the interrupt. If the input
returns to its initial logic state before the input is read, then the interrupt is not cleared and the input
register keeps the logic value that initiated the interrupt. The next read of the input will show the
initial state. Care must be taken when using bit reads on the input when latching is enabled - the bit
method still reads the entire input register so a change on another bit could be missed. It is best to use
port or tuple input reads when using latching.

If the input is changed from latched to non-latched, a read from the input reflects the current terminal
logic level. If the input is changed from non-latched to latched input, the read from the input represents
the latched logic level.

• DIOConfigItem.OUTPUT_TYPE: Set the output type by writing 0 for push-pull or 1 for open-
drain. This setting affects all outputs so is not a per-channel setting. It should be set to the desired
type before using DIOConfigItem.DIRECTION to set channels as outputs. Internal pull-up/down
resistors are disabled when a bit is set to output and is configured as open-drain, so external resistors
should be used.

126 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

• DIOConfigItem.INT_MASK: Enable or disable interrupt generation for specific inputs by mask-
ing the interrupt. Write 0 in a bit to enable the interrupt from that channel or 1 to mask (disable)
it.

All MCC 152s share a single interrupt signal to the CPU, so when an interrupt occurs the user
must determine the source, optionally act on the interrupt, then clear that source so that other in-
terrupts may be detected. The current interrupt state may be read with interrupt_state().
A user program may wait for the interrupt to become active with wait_for_interrupt(),
or may register an interrupt callback function with interrupt_callback_enable(). This
allows the user to wait for a change on one or more inputs without constantly reading the
inputs. The source of the interrupt may be determined by reading the interrupt status of
each MCC 152 with dio_int_status_read_bit(), dio_int_status_read_port()
or dio_int_status_read_tuple(), and all active interrupt sources must be cleared be-
fore the interrupt will become inactive. The interrupt is cleared by reading the input with
dio_input_read_bit(), dio_input_read_port(), or dio_input_read_tuple().

Parameters

• item (integer) – The configuration item, one of DIOConfigItem.

• value (integer) – The configuration value.

Raises

• HatError – the board is not initialized, does not respond, or responds incorrectly.

• ValueError – an argument is invalid.

dio_config_write_dict(item, value_dict)
Write a digital I/O configuration value for multiple channels.

There are several configuration items that may be written for the digital I/O. They are written for multiple
channels at once using a dictionary of channel:value pairs. If a channel is repeated in the dictionary
then the last value will be used. The item is selected with the item argument, which may be one of the
DIOConfigItem values:

• DIOConfigItem.DIRECTION : Set the digital I/O channel directions by passing 0 in a value for
output and 1 for input.

• DIOConfigItem.PULL_CONFIG: Configure the pull-up/down resistors by passing 0 in a value for
pull-down or 1 for pull-up. The resistors may be enabled or disabled with the DIOConfigItem.
PULL_ENABLE item.

• DIOConfigItem.PULL_ENABLE: Enable or disable pull-up/down resistors by passing 0 in
a value for disabled or 1 for enabled. The resistors are configured for pull-up/down with the
DIOConfigItem.PULL_CONFIG item. The resistors are automatically disabled if the bits are
set to output and configured as open-drain.

• DIOConfigItem.INPUT_INVERT: Enable inverting inputs by passing a 0 in a value for normal
input or 1 for inverted.

• DIOConfigItem.INPUT_LATCH : Enable input latching by passing 0 in a value for non-latched
or 1 for latched.

When the input is non-latched, reads show the current status of the input. A state change in the
corresponding input generates an interrupt (if it is not masked). A read of the input clears the interrupt.
If the input goes back to its initial logic state before the input is read, then the interrupt is cleared.
When the input is latched, a change of state of the input generates an interrupt and the input logic
value is loaded into the input port register. A read of the input will clear the interrupt. If the input
returns to its initial logic state before the input is read, then the interrupt is not cleared and the input

5.5. MCC 152 class 127



MCC DAQ HAT Library Documentation, Release 1.4.0

register keeps the logic value that initiated the interrupt. The next read of the input will show the
initial state. Care must be taken when using bit reads on the input when latching is enabled - the bit
method still reads the entire input register so a change on another bit could be missed. It is best to use
port or tuple input reads when using latching.

If the input is changed from latched to non-latched, a read from the input reflects the current terminal
logic level. If the input is changed from non-latched to latched input, the read from the input represents
the latched logic level.

• DIOConfigItem.OUTPUT_TYPE: Set the output type by writing 0 for push-pull or 1 for open-
drain. This setting affects all outputs so is not a per-channel setting. It should be set to the desired
type before using DIOConfigItem.DIRECTION to set channels as outputs. Internal pull-up/down
resistors are disabled when a bit is set to output and is configured as open-drain, so external resistors
should be used.

• DIOConfigItem.INT_MASK: Enable or disable interrupt generation for specific inputs by mask-
ing the interrupt. Write 0 in a value to enable the interrupt from that channel or 1 to mask (disable)
it.

All MCC 152s share a single interrupt signal to the CPU, so when an interrupt occurs the user
must determine the source, optionally act on the interrupt, then clear that source so that other in-
terrupts may be detected. The current interrupt state may be read with interrupt_state().
A user program may wait for the interrupt to become active with wait_for_interrupt(),
or may register an interrupt callback function with interrupt_callback_enable(). This
allows the user to wait for a change on one or more inputs without constantly reading the
inputs. The source of the interrupt may be determined by reading the interrupt status of
each MCC 152 with dio_int_status_read_bit(), dio_int_status_read_port()
or dio_int_status_read_tuple(), and all active interrupt sources must be cleared be-
fore the interrupt will become inactive. The interrupt is cleared by reading the input with
dio_input_read_bit(), dio_input_read_port(), or dio_input_read_tuple().

For example, to set channels 6 and 7 to output:

values = { 6:0, 7:0 }
mcc152.dio_config_write_dict(DIOConfigItem.DIRECTION, values)

Parameters

• item (integer) – The configuration item, one of DIOConfigItem.

• value_dict (dictionary) – The configuration values for multiple channels in a dictionary
of channel:value pairs.

Raises

• HatError – the board is not initialized, does not respond, or responds incorrectly.

• ValueError – an argument is invalid.

dio_config_read_bit(channel, item)
Read a digital I/O configuration value for a single channel.

There are several configuration items that may be read for the digital I/O. The item is selected with the
item argument, which may be one of the DIOConfigItems values:

• DIOConfigItem.DIRECTION : Read the digital I/O channel direction setting, where 0 is output
and 1 is input.

• DIOConfigItem.PULL_CONFIG: Read the pull-up/down resistor configuration where 0 is pull-
down and 1 is pull-up.

128 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

• DIOConfigItem.PULL_ENABLE: Read the pull-up/down resistor enable setting where 0 is dis-
abled and 1 is enabled.

• DIOConfigItem.INPUT_INVERT: Read the input inversion setting where 0 is normal input and
1 is inverted.

• DIOConfigItem.INPUT_LATCH : Read the input latching setting where 0 is non-latched and 1 is
latched.

• DIOConfigItem.OUTPUT_TYPE: Read the output type setting where 0 is push-pull and 1 is open-
drain. This setting affects all outputs so is not a per-channel setting and the channel argument is
ignored.

• DIOConfigItem.INT_MASK: Read the interrupt mask setting where 0 in a bit enables the interrupt
and 1 disables it.

Parameters

• channel (integer) – The digital I/O channel, 0 - 7.

• item (integer) – The configuration item, one of DIOConfigItem.

Returns int: The configuration item value.

Raises

• HatError – the board is not initialized, does not respond, or responds incorrectly.

• ValueError – an argument is invalid.

dio_config_read_port(item)
Read a digital I/O configuration value for all channels.

There are several configuration items that may be read for the digital I/O. They are read for all channels at
once, returning an 8-bit integer where each bit corresponds to a channel (bit 0 is channel 0, etc.) The item
is selected with the item argument, which may be one of the DIOConfigItem values:

• DIOConfigItem.DIRECTION : Read the digital I/O channels direction settings, where 0 in a bit
is output and 1 is input.

• DIOConfigItem.PULL_CONFIG: Read the pull-up/down resistor configurations where 0 in a bit
is pull-down and 1 is pull-up.

• DIOConfigItem.PULL_ENABLE: Read the pull-up/down resistor enable settings where 0 in a bit
is disabled and 1 is enabled.

• DIOConfigItem.INPUT_INVERT: Read the input inversion settings where 0 in a bit is normal
input and 1 is inverted.

• DIOConfigItem.INPUT_LATCH : Read the input latching settings where 0 in a bit is non-latched
and 1 is latched.

• DIOConfigItem.OUTPUT_TYPE: Read the output type setting where 0 is push-pull and 1 is open-
drain. This setting affects all outputs so is not a per-channel setting.

• DIOConfigItem.INT_MASK: Read the interrupt mask settings where 0 in a bit enables the inter-
rupt and 1 disables it.

Parameters item (integer) – The configuration item, one of DIOConfigItem.

Returns int: The configuration item value.

5.5. MCC 152 class 129



MCC DAQ HAT Library Documentation, Release 1.4.0

Raises

• HatError – the board is not initialized, does not respond, or responds incorrectly.

• ValueError – an argument is invalid.

dio_config_read_tuple(item)
Read a digital I/O configuration value for all channels as a tuple.

There are several configuration items that may be read for the digital I/O. They are read for all channels at
once, returning a tuple in channel order. The item is selected with the item argument, which may be one
of the DIOConfigItem values:

• DIOConfigItem.DIRECTION : Read the digital I/O channels direction settings, where 0 in a value
is output and 1 is input.

• DIOConfigItem.PULL_CONFIG: Read the pull-up/down resistor configurations where 0 in a
value is pull-down and 1 is pull-up.

• DIOConfigItem.PULL_ENABLE: Read the pull-up/down resistor enable settings where 0 in a
value is disabled and 1 is enabled.

• DIOConfigItem.INPUT_INVERT: Read the input inversion settings where 0 in a value is normal
input and 1 is inverted.

• DIOConfigItem.INPUT_LATCH : Read the input latching settings where 0 in a value is non-
latched and 1 is latched.

• DIOConfigItem.OUTPUT_TYPE: Read the output type setting where 0 is push-pull and 1 is open-
drain. This setting affects all outputs so is not a per-channel setting.

• DIOConfigItem.INT_MASK: Read the interrupt mask settings where 0 in a value enables the
interrupt and 1 disables it.

Parameters item (integer) – The configuration item, one of DIOConfigItem.

Returns tuple of int: The configuration item values.

Raises

• HatError – the board is not initialized, does not respond, or responds incorrectly.

• ValueError – an argument is invalid.

address()
Return the device address.

5.5.2 Data

5.5.2.1 DIO Config Items

class daqhats.DIOConfigItem
Digital I/O Configuration Items.

DIRECTION = 0
Configure channel direction

PULL_CONFIG = 1
Configure pull-up/down resistor

130 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

PULL_ENABLE = 2
Enable pull-up/down resistor

INPUT_INVERT = 3
Configure input inversion

INPUT_LATCH = 4
Configure input latching

OUTPUT_TYPE = 5
Configure output type

INT_MASK = 6
Configure interrupt mask

5.6 MCC 172 class

5.6.1 Methods

class daqhats.mcc172(address=0)
The class for an MCC 172 board.

Parameters address (int) – board address, must be 0-7.

Raises HatError – the board did not respond or was of an incorrect type

Methods

Method Description
mcc172.info() Get info about this device type.
mcc172.firmware_version() Get the firmware version.
mcc172.serial() Read the serial number.
mcc172.blink_led() Blink the MCC 172 LED.
mcc172.calibration_date() Read the calibration date.
mcc172.calibration_coefficient_read() Read the calibration coefficients for a channel.
mcc172.calibration_coefficient_write() Write the calibration coefficients for a channel.
mcc172.iepe_config_read() Read the IEPE configuration for a channel.
mcc172.iepe_config_write() Write the IEPE configuration for a channel.
mcc172.a_in_sensitivity_read() Read the sensitivity factor for a channel.
mcc172.a_in_sensitivity_write() Write the sensitivity factor for a channel.
mcc172.a_in_clock_config_read() Read the sampling clock configuration.
mcc172.a_in_clock_config_write() Write the sampling clock configuration.
mcc172.trigger_config() Configure the external trigger input.
mcc172.a_in_scan_actual_rate() Read the actual sample rate for a requested sam-

ple rate.
mcc172.a_in_scan_start() Start a hardware-paced analog input scan.
mcc172.a_in_scan_buffer_size() Read the size of the internal scan data buffer.
mcc172.a_in_scan_read() Read scan status / data (list).
mcc172.a_in_scan_read_numpy() Read scan status / data (NumPy array).
mcc172.a_in_scan_channel_count() Get the number of channels in the current scan.
mcc172.a_in_scan_stop() Stop the scan.
mcc172.a_in_scan_cleanup() Free scan resources.
mcc172.address() Read the board’s address.

5.6. MCC 172 class 131



MCC DAQ HAT Library Documentation, Release 1.4.0

static info()
Return constant information about this type of device.

Returns

A namedtuple containing the following field names:

• NUM_AI_CHANNELS (int): The number of analog input channels (2.)

• AI_MIN_CODE (int): The minimum ADC code (-8388608.)

• AI_MAX_CODE (int): The maximum ADC code (8388607.)

• AI_MIN_VOLTAGE (float): The voltage corresponding to the minimum ADC code (-
5.0.)

• AI_MAX_VOLTAGE (float): The voltage corresponding to the maximum ADC code
(+5.0 - 1 LSB)

• AI_MIN_RANGE (float): The minimum voltage of the input range (-5.0.)

• AI_MAX_RANGE (float): The maximum voltage of the input range (+5.0.)

Return type namedtuple

firmware_version()
Read the board firmware and bootloader versions.

Returns

A namedtuple containing the following field names:

• version (string): The firmware version, i.e “1.03”.

Return type namedtuple

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

serial()
Read the serial number.

Returns The serial number.

Return type string

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

blink_led(count)
Blink the MCC 172 LED.

Setting count to 0 will cause the LED to blink continuously until blink_led() is called again with a non-zero
count.

Parameters count (int) – The number of times to blink (max 255).

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

calibration_date()
Read the calibration date.

Returns The calibration date in the format “YYYY-MM-DD”.

Return type string

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

132 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

calibration_coefficient_read(channel)
Read the calibration coefficients for a single channel.

The coefficients are applied in the library as:

calibrated_ADC_code = (raw_ADC_code - offset) * slope

Parameters channel (int) – The analog input channel (0-1.)

Returns

A namedtuple containing the following field names:

• slope (float): The slope.

• offset (float): The offset.

Return type namedtuple

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

calibration_coefficient_write(channel, slope, offset)
Temporarily write the calibration coefficients for a single channel.

The user can apply their own calibration coefficients by writing to these values. The values will reset to
the factory values from the EEPROM whenever the class is initialized. This function will fail and raise a
HatError exception if a scan is active when it is called.

The coefficients are applied in the library as:

calibrated_ADC_code = (raw_ADC_code - offset) * slope

Parameters

• channel (int) – The analog input channel (0-1.)

• slope (float) – The new slope value.

• offset (float) – The new offset value.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

iepe_config_write(channel, mode)
Configure a channel for an IEPE sensor.

This method turns on / off the IEPE power supply for the specified channel. The power-on default is IEPE
power off.

Parameters

• channel (int) – The channel, 0 or 1.

• mode (int) – The IEPE mode for the channel, 0 = IEPE off, 1 = IEPE on.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

iepe_config_read(channel)
Read the IEPE configuration for a channel.

This method returns the state of the IEPE power supply for the specified channel

Parameters channel (int) – The channel, 0 or 1.

Returns int: The IEPE mode for the channel, 0 = IEPE off, 1 = IEPE on.

5.6. MCC 172 class 133



MCC DAQ HAT Library Documentation, Release 1.4.0

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

a_in_sensitivity_write(channel, value)
Write the MCC 172 analog input sensitivity scaling factor for a single channel.

This applies a scaling factor to the analog input data so it returns values that are meaningful for the con-
nected sensor.

The sensitivity is specified in mV / mechanical unit. The default value when opening the library is 1000,
resulting in no scaling of the input voltage. Changing this value will not change the values reported by
info() since it is simply sensor scaling applied to the data before returning it.

Examples:

• A seismic sensor with a sensitivity of 10 V/g. Set the sensitivity to 10,000 and the returned data will
be in units of g.

• A vibration sensor with a sensitivity of 100 mV/g. Set the sensitivity to 100 and the returned data will
be in units of g.

Parameters

• channel (int) – The channel, 0 or 1.

• value (float) – The sensitivity for the specified channel.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

a_in_sensitivity_read(channel)

Read the MCC 172 analog input sensitivity scaling factor for a single channel.

The sensitivity is returned in mV / mechanical unit. The default value when opening the library is 1000,
resulting in no scaling of the input voltage.

Parameters channel (int) – The channel, 0 or 1.

Returns float: The sensitivity factor for the channel.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

a_in_clock_config_write(clock_source, sample_rate_per_channel)
Configure the ADC sampling clock.

This method will configure the ADC sampling clock. The default configuration after opening the device is
local mode, 51.2 KHz sampling rate. The clock source must be one of:

• SourceType.LOCAL: the clock is generated on this MCC 172 and not shared with any other de-
vices.

• SourceType.MASTER: the clock is generated on this MCC 172 and shared over the Raspberry Pi
header with other MCC 172s. All other MCC 172s must be configured for local or slave clock.

• SourceType.SLAVE: no clock is generated on this MCC 172, it receives its clock from the Rasp-
berry Pi header. Another MCC 172 must be configured for master clock.

The ADCs will be synchronized so they sample the inputs at the same time. This requires 128 clock cycles
before the first sample is available. When using a master - slave clock configuration there are additional
considerations:

• There should be only one master device; otherwise, you will be connecting multiple outputs together
and could damage a device.

134 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

• Configure the clock on the slave device(s) first, master last. The synchronization will occur when the
master clock is configured, causing the ADCs on all the devices to be in sync.

• If you change the clock configuration on one device after configuring the master, then the data will
no longer be in sync. The devices cannot detect this and will still report that they are synchronized.
Always write the clock configuration to all devices when modifying the configuration.

• Slave devices must have a master clock source or scans will never complete.

• A trigger must be used for the data streams from all devices to start on the same sample.

The MCC 172 can generate a sampling clock equal to 51.2 KHz divided by an integer between 1 and 256.
The sample_rate_per_channel will be internally converted to the nearest valid rate. The actual rate can be
read back using a_in_clock_config_read(). When used in slave clock configuration, the device
will measure the frequency of the incoming master clock after the synchronization period is complete.
Calling a_in_clock_config_read() after this will return the measured sample rate.

Parameters

• clock_source (SourceType) – The ADC clock source.

• sample_rate_per_channel (float) – The requested sampling rate in samples per second
per channel.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

a_in_clock_config_read()
Read the sampling clock configuration.

This method will return the sample clock configuration and rate. If the clock is configured for local or
master source, then the rate will be the internally adjusted rate set by the user. If the clock is configured
for slave source, then the rate will be measured from the master clock after the synchronization period has
ended. The synchronization status is also returned.

The clock source will be one of:

• SourceType.LOCAL: the clock is generated on this MCC 172 and not shared with any other de-
vices.

• SourceType.MASTER: the clock is generated on this MCC 172 and shared over the Raspberry Pi
header with other MCC 172s.

• SourceType.SLAVE: no clock is generated on this MCC 172, it receives its clock from the Rasp-
berry Pi header.

The sampling rate will not be valid in slave mode if synced is False. The device will not detect a loss of
the master clock when in slave mode; it only monitors the clock when a sync is initiated.

Returns namedtuple: a namedtuple containing the following field names:

• clock_source (SourceType): The ADC clock source.

• sample_rate_per_channel (float): The sample rate in samples per second per channel.

• synchronized (bool): True if the ADCs are synchronized, False if a synchronization is in
progress.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

trigger_config(trigger_source, trigger_mode)
Configure the digital trigger.

5.6. MCC 172 class 135



MCC DAQ HAT Library Documentation, Release 1.4.0

The analog input scan may be configured to start saving the acquired data when the digital trigger is in the
desired state. A single device trigger may also be shared with multiple boards. This command sets the
trigger source and mode.

The trigger source must be one of:

• SourceType.LOCAL: the trigger terminal on this MCC 172 is used and not shared with any other
devices.

• SourceType.MASTER: the trigger terminal on this MCC 172 is used and is shared as the master
trigger for other MCC 172s.

• SourceType.SLAVE: the trigger terminal on this MCC 172 is not used, it receives its trigger from
the master MCC 172.

The trigger mode must be one of:

• TriggerModes.RISING_EDGE: Start saving data when the trigger transitions from low to high.

• TriggerModes.FALLING_EDGE: Start saving data when the trigger transitions from high to low.

• TriggerModes.ACTIVE_HIGH : Start saving data when the trigger is high.

• TriggerModes.ACTIVE_LOW : Start saving data when the trigger is low.

Due to the nature of the filtering in the A/D converters there is an input delay of 39 samples, so the data
coming from the converters at any time is delayed by 39 samples from the current time. This is most
noticeable when using a trigger - there will be approximately 39 samples prior to the trigger event in the
captured data.

Care must be taken when using master / slave triggering; the input trigger signal on the master will be
passed through to the slave(s), but the mode is set independently on each device. For example, it is
possible for the master to trigger on the rising edge of the signal and the slave to trigger on the falling
edge.

Parameters

• trigger_source (SourceType) – The trigger source.

• trigger_mode (TriggerModes) – The trigger mode.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

static a_in_scan_actual_rate(sample_rate_per_channel)
Calculate the actual sample rate per channel for a requested sample rate.

The scan clock is generated from a 51.2 KHz clock source divided by an integer between 1 and 256, so
only discrete frequency steps can be achieved. This method will return the actual rate for a requested
sample rate.

This function does not perform any actions with a board, it simply calculates the rate.

Parameters sample_rate_per_channel (float) – The desired per-channel rate of the internal
sampling clock.

Returns The actual sample rate.

Return type float

a_in_scan_start(channel_mask, samples_per_channel, options)
Start capturing analog input data.

The scan runs as a separate thread from the user’s code. This function will allocate a scan buffer and start
the thread that reads data from the device into that buffer. The user reads the data from the scan buffer and

136 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

the scan status using the a_in_scan_read() function. a_in_scan_stop() is used to stop a con-
tinuous scan, or to stop a finite scan before it completes. The user must call a_in_scan_cleanup()
after the scan has finished and all desired data has been read; this frees all resources from the scan and
allows additional scans to be performed.

The scan cannot be started until the ADCs are synchronized, so this function will not return until that has
completed. It is best to wait for sync using a_in_clock_config_read() before starting the scan.

The scan state has defined terminology:

• Active: a_in_scan_start() has been called and the device may be acquiring data or finished
with the acquisition. The scan has not been cleaned up by calling a_in_scan_cleanup(), so
another scan may not be started.

• Running: The scan is active and the device is still acquiring data. Certain methods like
a_in_clock_config_write() will return an error because the device is busy.

The scan options that may be used are:

• OptionFlags.DEFAULT: Return scaled and calibrated data, do not use a trigger, and finite opera-
tion. Any other flags will override DEFAULT behavior.

• OptionFlags.NOSCALEDATA: Return ADC codes (values between -8,388,608 and 8,388,607)
rather than voltage.

• OptionFlags.NOCALIBRATEDATA: Return data without the calibration factors applied.

• OptionFlags.EXTTRIGGER: Do not start saving data (after calling a_in_scan_start())
until the trigger condition is met. The trigger is configured with trigger_config().

• OptionFlags.CONTINUOUS: Read analog data continuously until stopped by the user by call-
ing a_in_scan_stop() and write data to a circular buffer. The data must be read before being
overwritten to avoid a buffer overrun error. samples_per_channel is only used for buffer sizing.

The OptionFlags.EXTCLOCK option is not supported for this device and will raise a ValueError.

The scan buffer size will be allocated as follows:

Finite mode: Total number of samples in the scan.

Continuous mode: Either samples_per_channel or the value in the table below, whichever is greater.

Sample Rate Buffer Size (per channel)
200-1024 S/s 1 kS
1280-10.24 kS/s 10 kS
12.8 kS or higher 100 kS

Specifying a very large value for samples_per_channel could use too much of the Raspberry Pi memory. If
the memory allocation fails, the function will raise a HatError with this description. The allocation could
succeed, but the lack of free memory could cause other problems in the Raspberry Pi. If you need to
acquire a high number of samples then it is better to run the scan in continuous mode and stop it when you
have acquired the desired amount of data. If a scan is active this method will raise a HatError.

Parameters

• channel_mask (int) – A bit mask of the desired channels (0x01 - 0x03).

• samples_per_channel (int) – The number of samples to acquire per channel (finite mode,)
or or can be used to set a larger scan buffer size than the default value (continuous mode.)

• options (int) – An ORed combination of OptionFlags flags that control the scan.

Raises

5.6. MCC 172 class 137



MCC DAQ HAT Library Documentation, Release 1.4.0

• HatError – a scan is active; memory could not be allocated; the board is not initialized,
does not respond, or responds incorrectly.

• ValueError – a scan argument is invalid.

a_in_scan_buffer_size()
Read the internal scan data buffer size.

An internal data buffer is allocated for the scan when a_in_scan_start() is called. This function
returns the total size of that buffer in samples.

Returns The buffer size in samples.

Return type int

Raises HatError – the board is not initialized or no scan buffer is allocated (a scan is not
active).

a_in_scan_status()
Read scan status and number of available samples per channel.

The analog input scan is started with a_in_scan_start() and runs in the background. This function
reads the status of that background scan and the number of samples per channel available in the scan thread
buffer.

Returns

A namedtuple containing the following field names:

• running (bool): True if the scan is running, False if it has stopped or completed.

• hardware_overrun (bool): True if the hardware could not acquire and unload samples
fast enough and data was lost.

• buffer_overrun (bool): True if the background scan buffer was not read fast enough and
data was lost.

• triggered (bool): True if the trigger conditions have been met and data acquisition started.

• samples_available (int): The number of samples per channel currently in the scan buffer.

Return type namedtuple

Raises HatError – A scan is not active, the board is not initialized, does not respond, or
responds incorrectly.

a_in_scan_read(samples_per_channel, timeout)
Read scan status and data (as a list).

The analog input scan is started with a_in_scan_start() and runs in the background. This function
reads the status of that background scan and optionally reads sampled data from the scan buffer.

Parameters

• samples_per_channel (int) – The number of samples per channel to read from the scan
buffer. Specify a negative number to return all available samples immediately and ignore
timeout or 0 to only read the scan status and return no data.

• timeout (float) – The amount of time in seconds to wait for the samples to be read. Specify
a negative number to wait indefinitely, or 0 to return immediately with the samples that
are already in the scan buffer (up to samples_per_channel.) If the timeout is met and
the specified number of samples have not been read, then the function will return all the
available samples and the timeout status set.

138 Chapter 5. Python Library Reference



MCC DAQ HAT Library Documentation, Release 1.4.0

Returns

A namedtuple containing the following field names:

• running (bool): True if the scan is running, False if it has stopped or completed.

• hardware_overrun (bool): True if the hardware could not acquire and unload samples
fast enough and data was lost.

• buffer_overrun (bool): True if the background scan buffer was not read fast enough and
data was lost.

• triggered (bool): True if the trigger conditions have been met and data acquisition started.

• timeout (bool): True if the timeout time expired before the specified number of samples
were read.

• data (list of float): The data that was read from the scan buffer.

Return type namedtuple

Raises

• HatError – A scan is not active, the board is not initialized, does not respond, or re-
sponds incorrectly.

• ValueError – Incorrect argument.

a_in_scan_read_numpy(samples_per_channel, timeout)
Read scan status and data (as a NumPy array).

This function is similar to a_in_scan_read() except that the data key in the returned namedtuple is
a NumPy array of float64 values and may be used directly with NumPy functions.

Parameters

• samples_per_channel (int) – The number of samples per channel to read from the scan
buffer. Specify a negative number to read all available samples or 0 to only read the scan
status and return no data.

• timeout (float) – The amount of time in seconds to wait for the samples to be read. Specify
a negative number to wait indefinitely, or 0 to return immediately with the samples that
are already in the scan buffer. If the timeout is met and the specified number of samples
have not been read, then the function will return with the amount that has been read and
the timeout status set.

Returns

A namedtuple containing the following field names:

• running (bool): True if the scan is running, False if it has stopped or completed.

• hardware_overrun (bool): True if the hardware could not acquire and unload samples
fast enough and data was lost.

• buffer_overrun (bool): True if the background scan buffer was not read fast enough and
data was lost.

• triggered (bool): True if the trigger conditions have been met and data acquisition started.

• timeout (bool): True if the timeout time expired before the specified number of samples
were read.

• data (NumPy array of float64): The data that was read from the scan buffer.

Return type namedtuple

5.6. MCC 172 class 139



MCC DAQ HAT Library Documentation, Release 1.4.0

Raises

• HatError – A scan is not active, the board is not initialized, does not respond, or re-
sponds incorrectly.

• ValueError – Incorrect argument.

a_in_scan_channel_count()
Read the number of channels in the current analog input scan.

Returns The number of channels (0 if no scan is active, 1-2 otherwise.)

Return type int

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

a_in_scan_stop()
Stops an analog input scan.

The device stops acquiring data immediately. The scan data that has been read into the scan buffer is
available until a_in_scan_cleanup() is called.

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

a_in_scan_cleanup()
Free analog input scan resources after the scan is complete.

This will free the scan buffer and other resources used by the background scan and make it possible to start
another scan with a_in_scan_start().

Raises HatError – the board is not initialized, does not respond, or responds incorrectly.

address()
Return the device address.

5.6.2 Data

5.6.2.1 Source types

class daqhats.SourceType
Clock / trigger source options.

LOCAL = 0
Use a local-only source.

MASTER = 1
Use a local source and set it as master.

SLAVE = 2
Use a master source from another MCC 172.

140 Chapter 5. Python Library Reference



INDEX

A
a_in_clock_config_read() (daqhats.mcc172 method), 135
a_in_clock_config_write() (daqhats.mcc172 method),

134
a_in_mode_read() (daqhats.mcc128 method), 108
a_in_mode_write() (daqhats.mcc128 method), 108
a_in_range_read() (daqhats.mcc128 method), 109
a_in_range_write() (daqhats.mcc128 method), 108
a_in_read() (daqhats.mcc118 method), 101
a_in_read() (daqhats.mcc128 method), 109
a_in_read() (daqhats.mcc134 method), 117
a_in_scan_actual_rate() (daqhats.mcc118 method), 101
a_in_scan_actual_rate() (daqhats.mcc128 method), 109
a_in_scan_actual_rate() (daqhats.mcc172 static method),

136
a_in_scan_buffer_size() (daqhats.mcc118 method), 103
a_in_scan_buffer_size() (daqhats.mcc128 method), 111
a_in_scan_buffer_size() (daqhats.mcc172 method), 138
a_in_scan_channel_count() (daqhats.mcc118 method),

105
a_in_scan_channel_count() (daqhats.mcc128 method),

113
a_in_scan_channel_count() (daqhats.mcc172 method),

140
a_in_scan_cleanup() (daqhats.mcc118 method), 105
a_in_scan_cleanup() (daqhats.mcc128 method), 113
a_in_scan_cleanup() (daqhats.mcc172 method), 140
a_in_scan_read() (daqhats.mcc118 method), 103
a_in_scan_read() (daqhats.mcc128 method), 111
a_in_scan_read() (daqhats.mcc172 method), 138
a_in_scan_read_numpy() (daqhats.mcc118 method), 104
a_in_scan_read_numpy() (daqhats.mcc128 method), 112
a_in_scan_read_numpy() (daqhats.mcc172 method), 139
a_in_scan_start() (daqhats.mcc118 method), 102
a_in_scan_start() (daqhats.mcc128 method), 110
a_in_scan_start() (daqhats.mcc172 method), 136
a_in_scan_status() (daqhats.mcc118 method), 103
a_in_scan_status() (daqhats.mcc128 method), 111
a_in_scan_status() (daqhats.mcc172 method), 138
a_in_scan_stop() (daqhats.mcc118 method), 105
a_in_scan_stop() (daqhats.mcc128 method), 113
a_in_scan_stop() (daqhats.mcc172 method), 140

a_in_sensitivity_read() (daqhats.mcc172 method), 134
a_in_sensitivity_write() (daqhats.mcc172 method), 134
a_out_write() (daqhats.mcc152 method), 120
a_out_write_all() (daqhats.mcc152 method), 120
ACTIVE_HIGH (daqhats.TriggerModes attribute), 97
ACTIVE_LOW (daqhats.TriggerModes attribute), 97
address() (daqhats.mcc118 method), 105
address() (daqhats.mcc128 method), 113
address() (daqhats.mcc134 method), 118
address() (daqhats.mcc152 method), 130
address() (daqhats.mcc172 method), 140
AnalogInputMode (class in daqhats), 113
AnalogInputRange (class in daqhats), 114
ANY (daqhats.HatIDs attribute), 97

B
BIP_10V (daqhats.AnalogInputRange attribute), 114
BIP_1V (daqhats.AnalogInputRange attribute), 114
BIP_2V (daqhats.AnalogInputRange attribute), 114
BIP_5V (daqhats.AnalogInputRange attribute), 114
blink_led() (daqhats.mcc118 method), 100
blink_led() (daqhats.mcc128 method), 107
blink_led() (daqhats.mcc172 method), 132

C
calibration_coefficient_read() (daqhats.mcc118 method),

100
calibration_coefficient_read() (daqhats.mcc128 method),

107
calibration_coefficient_read() (daqhats.mcc134 method),

115
calibration_coefficient_read() (daqhats.mcc172 method),

132
calibration_coefficient_write() (daqhats.mcc118 method),

100
calibration_coefficient_write() (daqhats.mcc128 method),

108
calibration_coefficient_write() (daqhats.mcc134 method),

115
calibration_coefficient_write() (daqhats.mcc172 method),

133
calibration_date() (daqhats.mcc118 method), 100

141



MCC DAQ HAT Library Documentation, Release 1.4.0

calibration_date() (daqhats.mcc128 method), 107
calibration_date() (daqhats.mcc134 method), 115
calibration_date() (daqhats.mcc172 method), 132
cjc_read() (daqhats.mcc134 method), 118
COMMON_MODE_TC_VALUE (daqhats.mcc134 at-

tribute), 114
CONTINUOUS (daqhats.OptionFlags attribute), 98

D
DEFAULT (daqhats.OptionFlags attribute), 98
DIFF (daqhats.AnalogInputMode attribute), 113
dio_config_read_bit() (daqhats.mcc152 method), 128
dio_config_read_port() (daqhats.mcc152 method), 129
dio_config_read_tuple() (daqhats.mcc152 method), 130
dio_config_write_bit() (daqhats.mcc152 method), 124
dio_config_write_dict() (daqhats.mcc152 method), 127
dio_config_write_port() (daqhats.mcc152 method), 126
dio_input_read_bit() (daqhats.mcc152 method), 121
dio_input_read_port() (daqhats.mcc152 method), 121
dio_input_read_tuple() (daqhats.mcc152 method), 122
dio_int_status_read_bit() (daqhats.mcc152 method), 124
dio_int_status_read_port() (daqhats.mcc152 method),

124
dio_int_status_read_tuple() (daqhats.mcc152 method),

124
dio_output_read_bit() (daqhats.mcc152 method), 123
dio_output_read_port() (daqhats.mcc152 method), 123
dio_output_read_tuple() (daqhats.mcc152 method), 123
dio_output_write_bit() (daqhats.mcc152 method), 122
dio_output_write_dict() (daqhats.mcc152 method), 123
dio_output_write_port() (daqhats.mcc152 method), 122
dio_reset() (daqhats.mcc152 method), 121
DIOConfigItem (class in daqhats), 130
DIRECTION (daqhats.DIOConfigItem attribute), 130
DISABLED (daqhats.TcTypes attribute), 118

E
EXTCLOCK (daqhats.OptionFlags attribute), 98
EXTTRIGGER (daqhats.OptionFlags attribute), 98

F
FALLING_EDGE (daqhats.TriggerModes attribute), 97
firmware_version() (daqhats.mcc118 method), 99
firmware_version() (daqhats.mcc128 method), 107
firmware_version() (daqhats.mcc172 method), 132

H
hat_error_message (C function), 48
hat_interrupt_callback_disable (C function), 49
hat_interrupt_callback_enable (C function), 48
hat_interrupt_state (C function), 48
hat_list (C function), 47
hat_list() (in module daqhats), 95

hat_wait_for_interrupt (C function), 48
HatError, 98
HatIDs (class in daqhats), 97

I
iepe_config_read() (daqhats.mcc172 method), 133
iepe_config_write() (daqhats.mcc172 method), 133
info() (daqhats.mcc118 static method), 99
info() (daqhats.mcc128 static method), 106
info() (daqhats.mcc134 static method), 114
info() (daqhats.mcc152 static method), 119
info() (daqhats.mcc172 static method), 132
INPUT_INVERT (daqhats.DIOConfigItem attribute),

131
INPUT_LATCH (daqhats.DIOConfigItem attribute), 131
INT_MASK (daqhats.DIOConfigItem attribute), 131
interrupt_callback_disable() (in module daqhats), 97
interrupt_callback_enable() (in module daqhats), 96
interrupt_state() (in module daqhats), 95

L
LOCAL (daqhats.SourceType attribute), 140

M
MASTER (daqhats.SourceType attribute), 140
mcc118 (class in daqhats), 98
mcc118_a_in_read (C function), 54
mcc118_a_in_scan_actual_rate (C function), 55
mcc118_a_in_scan_buffer_size (C function), 56
mcc118_a_in_scan_channel_count (C function), 58
mcc118_a_in_scan_cleanup (C function), 58
mcc118_a_in_scan_read (C function), 57
mcc118_a_in_scan_start (C function), 55
mcc118_a_in_scan_status (C function), 57
mcc118_a_in_scan_stop (C function), 58
mcc118_blink_led (C function), 53
mcc118_calibration_coefficient_read (C function), 53
mcc118_calibration_coefficient_write (C function), 54
mcc118_calibration_date (C function), 53
mcc118_close (C function), 52
mcc118_firmware_version (C function), 53
mcc118_info (C function), 52
mcc118_is_open (C function), 52
mcc118_open (C function), 52
mcc118_serial (C function), 53
mcc118_trigger_mode (C function), 55
mcc128 (class in daqhats), 105
mcc128_a_in_mode_read (C function), 62
mcc128_a_in_mode_write (C function), 62
mcc128_a_in_range_read (C function), 62
mcc128_a_in_range_write (C function), 62
mcc128_a_in_read (C function), 63
mcc128_a_in_scan_actual_rate (C function), 63
mcc128_a_in_scan_buffer_size (C function), 65

142 Index



MCC DAQ HAT Library Documentation, Release 1.4.0

mcc128_a_in_scan_channel_count (C function), 66
mcc128_a_in_scan_cleanup (C function), 66
mcc128_a_in_scan_read (C function), 65
mcc128_a_in_scan_start (C function), 64
mcc128_a_in_scan_status (C function), 65
mcc128_a_in_scan_stop (C function), 66
mcc128_blink_led (C function), 60
mcc128_calibration_coefficient_read (C function), 61
mcc128_calibration_coefficient_write (C function), 61
mcc128_calibration_date (C function), 61
mcc128_close (C function), 60
mcc128_firmware_version (C function), 60
mcc128_info (C function), 60
mcc128_is_open (C function), 60
mcc128_open (C function), 59
mcc128_serial (C function), 60
mcc128_trigger_mode (C function), 63
mcc134 (class in daqhats), 114
mcc134_a_in_read (C function), 71
mcc134_calibration_coefficient_read (C function), 69
mcc134_calibration_coefficient_write (C function), 69
mcc134_calibration_date (C function), 69
mcc134_cjc_read (C function), 72
mcc134_close (C function), 69
mcc134_info (C function), 69
mcc134_is_open (C function), 68
mcc134_open (C function), 68
mcc134_serial (C function), 69
mcc134_t_in_read (C function), 71
mcc134_tc_type_read (C function), 70
mcc134_tc_type_write (C function), 70
mcc134_update_interval_read (C function), 71
mcc134_update_interval_write (C function), 70
mcc152 (class in daqhats), 119
mcc152_a_out_write (C function), 75
mcc152_a_out_write_all (C function), 75
mcc152_close (C function), 74
mcc152_dio_config_read_bit (C function), 80
mcc152_dio_config_read_port (C function), 81
mcc152_dio_config_write_bit (C function), 78
mcc152_dio_config_write_port (C function), 79
mcc152_dio_input_read_bit (C function), 76
mcc152_dio_input_read_port (C function), 76
mcc152_dio_int_status_read_bit (C function), 77
mcc152_dio_int_status_read_port (C function), 78
mcc152_dio_output_read_bit (C function), 77
mcc152_dio_output_read_port (C function), 77
mcc152_dio_output_write_bit (C function), 76
mcc152_dio_output_write_port (C function), 77
mcc152_dio_reset (C function), 75
mcc152_info (C function), 75
mcc152_is_open (C function), 74
mcc152_open (C function), 74
mcc152_serial (C function), 75

mcc172 (class in daqhats), 131
mcc172_a_in_clock_config_read (C function), 87
mcc172_a_in_clock_config_write (C function), 87
mcc172_a_in_scan_buffer_size (C function), 90
mcc172_a_in_scan_channel_count (C function), 91
mcc172_a_in_scan_cleanup (C function), 92
mcc172_a_in_scan_read (C function), 91
mcc172_a_in_scan_start (C function), 89
mcc172_a_in_scan_status (C function), 90
mcc172_a_in_scan_stop (C function), 91
mcc172_a_in_sensitivity_read (C function), 86
mcc172_a_in_sensitivity_write (C function), 86
mcc172_blink_led (C function), 84
mcc172_calibration_coefficient_read (C function), 84
mcc172_calibration_coefficient_write (C function), 85
mcc172_calibration_date (C function), 84
mcc172_close (C function), 83
mcc172_firmware_version (C function), 84
mcc172_iepe_config_read (C function), 85
mcc172_iepe_config_write (C function), 85
mcc172_info (C function), 84
mcc172_is_open (C function), 83
mcc172_open (C function), 83
mcc172_serial (C function), 84
mcc172_trigger_config (C function), 88
MCC_118 (daqhats.HatIDs attribute), 97
MCC_128 (daqhats.HatIDs attribute), 97
MCC_134 (daqhats.HatIDs attribute), 97
MCC_152 (daqhats.HatIDs attribute), 97
MCC_172 (daqhats.HatIDs attribute), 97

N
NOCALIBRATEDATA (daqhats.OptionFlags attribute),

98
NOSCALEDATA (daqhats.OptionFlags attribute), 98

O
OPEN_TC_VALUE (daqhats.mcc134 attribute), 114
OptionFlags (class in daqhats), 98
OUTPUT_TYPE (daqhats.DIOConfigItem attribute), 131
OVERRANGE_TC_VALUE (daqhats.mcc134 attribute),

114

P
PULL_CONFIG (daqhats.DIOConfigItem attribute), 130
PULL_ENABLE (daqhats.DIOConfigItem attribute), 130

R
RISING_EDGE (daqhats.TriggerModes attribute), 97

S
SE (daqhats.AnalogInputMode attribute), 113
serial() (daqhats.mcc118 method), 100

Index 143



MCC DAQ HAT Library Documentation, Release 1.4.0

serial() (daqhats.mcc128 method), 107
serial() (daqhats.mcc134 method), 115
serial() (daqhats.mcc152 method), 120
serial() (daqhats.mcc172 method), 132
SLAVE (daqhats.SourceType attribute), 140
SourceType (class in daqhats), 140

T
t_in_read() (daqhats.mcc134 method), 117
tc_type_read() (daqhats.mcc134 method), 116
tc_type_write() (daqhats.mcc134 method), 116
TcTypes (class in daqhats), 118
TEMPERATURE (daqhats.OptionFlags attribute), 98
trigger_config() (daqhats.mcc172 method), 135
trigger_mode() (daqhats.mcc118 method), 101
trigger_mode() (daqhats.mcc128 method), 108
TriggerModes (class in daqhats), 97
TYPE_B (daqhats.TcTypes attribute), 118
TYPE_E (daqhats.TcTypes attribute), 118
TYPE_J (daqhats.TcTypes attribute), 118
TYPE_K (daqhats.TcTypes attribute), 118
TYPE_N (daqhats.TcTypes attribute), 118
TYPE_R (daqhats.TcTypes attribute), 118
TYPE_S (daqhats.TcTypes attribute), 118
TYPE_T (daqhats.TcTypes attribute), 118

U
update_interval_read() (daqhats.mcc134 method), 116
update_interval_write() (daqhats.mcc134 method), 116

W
wait_for_interrupt() (in module daqhats), 96

144 Index


	Hardware Overview
	Hardware Compatibility
	MCC 118
	Board components
	Screw terminals
	Address jumpers
	Status LED
	Header connector

	Functional block diagram
	Functional details
	Scan clock
	Trigger

	Firmware updates
	MCC 118-OEM
	Specifications

	MCC 128
	Single Ended Input configuration
	Differential Input Configuration
	Board components
	Screw terminals
	Address jumpers
	Status LED
	Header connector

	Functional block diagram
	Functional details
	Scan clock
	Trigger

	Firmware updates
	MCC 128-OEM
	Specifications

	MCC 134
	Board components
	Screw terminals
	Address jumpers
	Status LED
	Header connector

	Functional block diagram
	Functional details
	Best practices for accurate thermocouple measurements

	Specifications

	MCC 152
	Board components
	Screw terminals
	Address jumpers
	DIO Power jumper (W3)
	Status LED
	Header connector

	Functional block diagram
	Functional details
	Mixing 3.3V and 5V digital inputs

	Specifications

	MCC 172
	Board components
	10-32 coaxial connectors
	Screw terminals
	Address jumpers
	Status LED
	Header connector

	Functional block diagram
	Functional details
	ADC clock
	Trigger
	Alias Rejection

	Firmware updates
	Specifications


	Installing the DAQ HAT board
	Installing a single board
	Installing multiple boards

	Installing and Using the Library
	Installation
	Firmware Updates
	MCC 118

	Creating a C program
	Creating a Python program

	C Library Reference
	Global functions and data
	Functions
	Data types and definitions
	HAT IDs
	Result Codes
	HatInfo structure
	Analog Input / Scan Option Flags
	Scan Status Flags
	Trigger Modes


	MCC 118 functions and data
	Functions
	Data definitions
	Device Info


	MCC 128 functions and data
	Functions
	Data definitions
	Device Info
	Analog Input Modes
	Analog Input Ranges


	MCC 134 functions and data
	Functions
	Data definitions
	Device Info
	Thermocouple Types


	MCC 152 functions and data
	Functions
	Data types and definitions
	Device Info
	DIO Config Items


	MCC 172 functions and data
	Functions
	Data definitions
	Device Info
	Source Types



	Python Library Reference
	Global methods and data
	Methods
	Data
	Hat IDs
	Trigger modes
	Scan / read option flags

	HatError class

	MCC 118 class
	Methods

	MCC 128 class
	Methods
	Data
	Analog input modes
	Analog input ranges


	MCC 134 class
	Methods
	Data
	Thermocouple types


	MCC 152 class
	Methods
	Data
	DIO Config Items


	MCC 172 class
	Methods
	Data
	Source types



	Index

